Tang T, Wu L, Yang L, Jiang J, Hao Q, Dong B, et al. A sarcopenia screening test predicts mortality in hospitalized older adults. Sci Rep. 2018;8(1):2923. https://doi.org/10.1038/s41598-018-21237-9.
Article
CAS
PubMed
PubMed Central
Google Scholar
Rondanelli M, Klersy C, Terracol G, et al. Whey protein, amino acids, and vitamin D supplementation with physical activity increases fat-free mass and strength, functionality, and quality of life and decreases inflammation in sarcopenic elderly. Am J Clin Nutr. 2016;103(3):830–40. https://doi.org/10.3945/ajcn.115.113357.
Article
CAS
PubMed
Google Scholar
Patel HP, Dennison EM, Westbury L, Sayer AA, Copper C. Sarcopenia and bone health in community dwelling older adults: findings from the hertfordshire sarcopenia study (HSS). Age Ageing. 2017;46(suppl 2):ii8. https://doi.org/10.1093/ageing/afx117.28.
Article
Google Scholar
Bauer JM, Sieber CC. Sarcopenia and frailty: a clinician’s controversial point of view. Exp Gerontol. 2008;43(7):674–8. https://doi.org/10.1016/j.exger.2008.03.007.
Article
CAS
PubMed
Google Scholar
Chen LK, Woo J, Assantachai P, Auyeung TW, Chou MY, Lijima K, et al. Asian working group for sarcopenia: 2019 consensus update on sarcopenia diagnosis and treatment. J Am Med Dir Assoc. 2020;21(3):300–7. https://doi.org/10.1016/j.jamda.2019.12.012.
Article
PubMed
Google Scholar
Schaap LA, Van NS, Lips P, Visser M. Associations of sarcopenia definitions, and their components, with the incidence of recurrent falling and fractures; the Longitudinal Aging Study Amsterdam. J Gerontol A Biol Sci Med Sci. 2018;73(9):1199–204. https://doi.org/10.1093/gerona/glx245.
Article
PubMed
Google Scholar
Leong DP, Teo KK, Rangarajan S, Lopez-Jaramillo P, Avezum A Jr, Orlandini A, et al. Prognostic value of grip strength: findings from the prospective urban rural epidemiology (PURE) study. Lancet. 2015;386:266–73. https://doi.org/10.1016/S0140-6736(14)62000-6.
Article
PubMed
Google Scholar
Schaap LA, Koster A, Visser M. Adiposity, muscle mass, and muscle strength in relation to functional decline in older persons. Epidemiol Rev. 2013;35(1):51–65. https://doi.org/10.1093/epirev/mxs006.
Article
PubMed
Google Scholar
Carmeli E. Frailty and primary sarcopenia: a review. Adv Exp Med Biol. 2017;1020:53–68. https://doi.org/10.1007/5584_2017_18.
Article
PubMed
Google Scholar
Wu X, Li X, Xu M, Zhang Z, He L, Li Y. Sarcopenia prevalence and associated factors among older Chinese population: findings from the China health and retirement longitudinal study. PLoS One. 2021;16(3):e0247617. https://doi.org/10.1371/journal.pone.0247617.
Article
CAS
PubMed
PubMed Central
Google Scholar
Miura H, Sakaguchi K, Ogawa W, Tamori Y. Clinical features of 65-year-old individuals in Japan diagnosed with possible sarcopenia based on the Asian Working Group for Sarcopenia 2019 criteria. Geriatr Gerontol Int. 2021;21(8):689–96. https://doi.org/10.1111/ggi.14182.
Article
PubMed
Google Scholar
Kim M, Won CW. Sarcopenia in Korean community-dwelling adults aged 70 years and older: application of screening and diagnostic tools from the Asian working group for sarcopenia 2019 update-science direct. J Am Med Dir Assoc. 2020;21(6):752–8. https://doi.org/10.1016/j.jamda.2020.03.018.
Article
PubMed
Google Scholar
Murphy RA, Ip EH, Zhang Q, Boudreau RM, Cawthon PM, Newman AB, et al. Transition to sarcopenia and determinants of transitions in older adults: a population-based study. J Gerontol A Biol Sci Med Sci. 2014;69(6):751–8. https://doi.org/10.1093/gerona/glt131.
Article
PubMed
Google Scholar
Wang T, Feng X, Zhou J, Gong H, Xia S, Wei Q, et al. Type 2 diabetes mellitus is associated with increased risks of sarcopenia and pre-sarcopenia in Chinese elderly. Sci Rep. 2016;6:38937. https://doi.org/10.1038/srep38937.
Article
CAS
PubMed
PubMed Central
Google Scholar
Xu W, Wang M, Jiang CM, Zhang YM. Anthropometric equation for estimation of appendicular skeletal muscle mass in Chinese adults. Asia Pac J Clin Nutr. 2011;20(4):551–6 https://search.informit.org/doi/10.3316/ielapa.688409051529343.
Google Scholar
Folstein MF, Folstein SE, McHugh PR. Mini-Mental State: a practical method for grading the cognitive state of patients for clinician. J Psychiatr Res. 1975;12(3):189–98. https://doi.org/10.1016/0022-3956(75)90026-6.
Article
CAS
PubMed
Google Scholar
Craig CL, Marshall AL, Sjöström M, Bauman AE, Booth ML, Ainsworth BE, et al. International physical activity questionnaire: 12-country reliability and validity. Med Sci Sports Exerc. 2003;35(8):1381–95. https://doi.org/10.1249/01.MSS.0000078924.61453.FB.
Article
PubMed
Google Scholar
Buysse DJ, Reynolds CF 3rd, Monk TH, Berman SR, Kupfer DJ. The Pittsburgh Sleep Quality Index: a new instrument for psychiatric practice and research. Psychiatry Res. 1989;28(2):193–213. https://doi.org/10.1016/0165-1781(89)90047-4.
Article
CAS
PubMed
Google Scholar
Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. Sarcopenia: revised European consensus on definition and diagnosis. Age Ageing. 2019;48(1):16–31. https://doi.org/10.1093/ageing/afy169.
Article
PubMed
Google Scholar
Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on Sarcopenia in older people. Age Ageing. 2010;39(4):412–23. https://doi.org/10.1093/ageing/afq034.
Article
PubMed
PubMed Central
Google Scholar
Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian working group for Sarcopenia. JAMDA. 2014;15(2):95–101. https://doi.org/10.1016/j.jamda.2013.11.025.
Article
PubMed
Google Scholar
Tianjin Bureau of Statistics. Tianjin 2020 seventh national census main data bulletin. Available at: http://stats.tj.gov.cn/tjsj_52032/tjgb/202105/t20210521_5457330.html. Accessed 21 May 2021.
Carmeli E, Coleman R, Reznick AZ. The biochemistry of aging muscle. Exp Gerontol. 2002;37(4):477–89. https://doi.org/10.1016/s0531-5565(01)00220-0.
Article
CAS
PubMed
Google Scholar
Dodds RM, Syddall HE, Cooper R, Benzeval M, Deary IJ, Dennison EM, et al. Grip strength across the life course: normative data from twelve British studies. PLoS One. 2014;9(12):e113637. https://doi.org/10.1371/journal.pone.0113637.
Article
CAS
PubMed
PubMed Central
Google Scholar
Fling BW, Knight CA, Kamen G. Relationships between motor unit size and recruitment threshold in older adults: implications for size principle. Exp Brain Res. 2009;197(2):125–33. https://doi.org/10.1007/s00221-009-1898-y.
Article
PubMed
Google Scholar
Lexell J, Downham DY. The occurrence of fibre-type grouping in healthy human muscle: a quantitative study of cross-sections of whole vastus lateralis from men between 15 and 83 years. Acta Neuropathol. 1991;81(4):377–81. https://doi.org/10.1007/BF00293457.
Article
CAS
PubMed
Google Scholar
Purves-Smith FM, Sgarioto N, Hepple RT. Fiber typing in aging muscle. Exerc Sport Sci Rev. 2014;42(2):45–52. https://doi.org/10.1249/JES.0000000000000012.
Article
PubMed
Google Scholar
D’Antona G, Pellegrino MA, Adami R, Rossi R, Carlizzi CN, Canepari M, et al. The effect of ageing and immobilization on structure and function of human skeletal muscle fibres. J Physiol. 2003;552(Pt 2):499–511. https://doi.org/10.1113/jphysiol.2003.046276.
Article
CAS
PubMed
PubMed Central
Google Scholar
Dodds R, Kuh D, Sayer AA, Cooper R. Physical activity levels across adult life and grip strength in early old age: updating findings from a British birth cohort. Age Ageing. 2013;42(6):794–8. https://doi.org/10.1093/ageing/aft124.
Article
PubMed
PubMed Central
Google Scholar
Shen X, Wang R, Bai J. Research progress in physical activity, physical fitness and health promotion. Chin J Sports Med. 2012;31(6):363–72. https://doi.org/10.3969/j.issn.1000-6710.2012.04.016.
Article
Google Scholar
Wang Y, Guo X, Yan Y, Xie M, Zhang Y, Su H, et al. Research progress in pathogenesis and physical therapy of age-related sarcopenia. Chin J Sports Med. 2016;35(6):568–72,87. https://doi.org/10.16038/j.1000-6710.2016.06.010.
Article
Google Scholar
Zhang Y, Tan Y, Huang X, Zhang Z, Bai J, Zhang M, et al. Prevalence and risk factors of sarcopenia among the elderly in Shanghai community. Geriatr Heal Care. 2018;24(6):608–13. https://doi.org/10.3969/j.issn.1008-8296.2018.06.014.
Article
Google Scholar
Bowen TS, Schuler G, Adams V. Skeletal muscle wasting in cachexia and sarcopenia: molecular pathophysiology and impact of exercise training. J Cachexia Sarcopenia Muscle. 2015;6(3):197–207. https://doi.org/10.1002/jcsm.12043.
Article
PubMed
PubMed Central
Google Scholar
Pedersen BK, Febbraio MA. Muscles, exercise and obesity: skeletal muscle as a secretory organ. Nat Rev Endocrinol. 2012;8(8):457–65. https://doi.org/10.1038/nrendo.2012.49.
Article
CAS
PubMed
Google Scholar
Henningsen J, Pedersen BK, Kratchmarova I. Quantitative analysis of the secretion of the MCP family of chemokines by muscle cells. Mol Bio Syst. 2011;7(2):311–21. https://doi.org/10.1039/c0mb00209g.
Article
CAS
Google Scholar
Henningsen J, Rigbolt KT, Blagoev B, Pedersen BK, Kratchmarova I. Dynamics of the skeletal muscle secretome during myoblast differentiation. Mol Cell Proteomics. 2010;9(11):2482–96. https://doi.org/10.1074/mcp.M110.002113.
Article
CAS
PubMed
PubMed Central
Google Scholar
Benatti FB, Pedersen BK. Exercise as an anti-inflammatory therapy for rheumatic diseases—myokine regulation. Nat Rev Rheumatol. 2015;11(2):86–97. https://doi.org/10.1038/nrrheum.2014.193.
Article
CAS
PubMed
Google Scholar
Scisciola L, Fontanella RA, Surina, Cataldo V, Paolisso G, Barbieri M. Sarcopenia and cognitive function: role of myokines in muscle brain cross-talk. Life. 2021;11(2):173–84. https://doi.org/10.3390/life11020173.
Article
CAS
PubMed
PubMed Central
Google Scholar
Agudelo LZ, Femenía T, Orhan F, Porsmyr-Palmertz M, Goiny M, Martinez-Redondo V, et al. Skeletal muscle PGC-1α1 modulates kynurenine metabolism and mediates resilience to stress-induced depression. Cell. 2014;159(1):33–45. https://doi.org/10.1016/j.cell.2014.07.051.
Article
CAS
PubMed
Google Scholar
Kim M, Won CW. Sarcopenia is associated with cognitive impairment mainly due to slow gait speed: results from the Korean Frailty and Aging Cohort Study (KFACS). Int J Environ Res Public Health. 2019;16(9):1491–508. https://doi.org/10.3390/ijerph16091491.
Article
PubMed Central
Google Scholar
Landi F, Liperoti R, Fusco D, Mastropaolo S, Quattrociocchi D, Proia A, et al. Prevalence and risk factors of sarcopenia among nursing home older residents. J Gerontol A Biol Sci Med Sci. 2012;67(1):48–55. https://doi.org/10.1093/gerona/glr035.
Article
PubMed
Google Scholar
Auyeung TW, Lee JSW, Leung J, Kwok T, Leung PC, Woo J. Survival in older men may benefit from being slightly overweight and centrally obese-- a 5-year follow-up study in 4,000 older adults using DXA. J Gerontol A Biol Sci Med Sci. 2010;65(1):99–104. https://doi.org/10.1093/gerona/glp099.
Article
PubMed
Google Scholar
Cesari M, Kritchevsky SB, Baumgartner RN, Atkinson HH, Penninx BW, Lenchik L, et al. Sarcopenia, obesity, and inflammation--results from the Trial of Angiotensin Converting Enzyme Inhibition and Novel Cardiovascular Risk Factors study. Am J Clin Nutr. 2005;82(2):428–34. https://doi.org/10.1093/ajcn.82.2.428.
Article
CAS
PubMed
Google Scholar
Manini TM, Clark BC, Nalls MA, Goodpaster BH, Ploutz-Snyder LL, Harris TB. Reduced physical activity increases intermuscular adipose tissue in healthy young adults. Am J Clin Nutr. 2007;85(2):377–84. https://doi.org/10.1093/ajcn/85.2.377.
Article
CAS
PubMed
Google Scholar
Delmonico MJ, Harris TB, Visser M, Park SW, Conroy MB, Velasquez-Mieyer P, et al. Longitudinal study of muscle strength, quality, and adipose tissue infiltration. Am J Clin Nutr. 2009;90(6):1579–85. https://doi.org/10.3945/ajcn.2009.28047.
Article
CAS
PubMed
PubMed Central
Google Scholar
Jensen GL. Inflammation: roles in aging and sarcopenia. JPEN J Parenter Enteral Nutr. 2008;32(6):656–9. https://doi.org/10.1177/0148607108324585.
Article
CAS
PubMed
Google Scholar
Farup J, Madaro L, Puri PL, Mikkelsen UR. Interactions between muscle stem cells, mesenchymal-derived cells and immune cells in muscle homeostasis, regeneration and disease. Cell Death Dis. 2015;6(7):e1830. https://doi.org/10.1038/cddis.2015.198.
Article
CAS
PubMed
PubMed Central
Google Scholar
Li S, Huang LP, Wang L, Chen Y, Li L, Zhang L, et al. Effects of 12 weeks aerobic exercise combined with high speed strength training on old adults with osteosarcopenic obesity syndrome. Chin J Rehabil Med. 2020;35(4):420–6. https://doi.org/10.3969/j.issn.1001-1242.2020.04.007.
Article
Google Scholar
Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56(3):146–56. https://doi.org/10.1093/gerona/56.3.m146.
Article
Google Scholar
Gao Q, Hu K, Yan C, Zhao B, Mei F, Chen F, et al. Associated factors of sarcopenia in community-dwelling older adults: a systematic review and meta-analysis. Nutrients. 2021;13(12):4291. https://doi.org/10.3390/nu13124291.
Article
PubMed
PubMed Central
Google Scholar
Martinez BP, Batista AKMS, Gomes IB, Olivieri FM, Camelier FWRC, Camelier AA. Frequency of sarcopenia and associated factors among hospitalized elderly patients. BMC Musculoskelet Disord. 2015;16:108. https://doi.org/10.1186/s12891-015-0570-x.
Article
PubMed
PubMed Central
Google Scholar