Woods NF, LaCroix AZ, Gray SL, Aragaki A, Cochrane BB, Brunner RL, et al. Frailty: emergence and consequences in women aged 65 and older in the Women’s health initiative observational study. J Am Geriatr Soc. 2005;53:1321–30.
Article
Google Scholar
Fried LP, Tangen CM, Walston J, Newman AB, Hirsch C, Gottdiener J, et al. Cardiovascular health study collaborative research group. Frailty in older adults: evidence for a phenotype. J Gerontol A Biol Sci Med Sci. 2001;56:M146–56.
Article
CAS
Google Scholar
Rockwood K, Howlett SE, MacKnight C, Beattie BL, Bergman H. He bert R, et al. prevalence, attributes, and outcomes of fitness and frailty in community-dwelling older adults: report from the Canadian study of health and aging. J Geront A Biol Sci Med Sci. 2004;59(12):1310–7.
Article
Google Scholar
Yanagita I, Fujihara Y, Eda T, Tajima M, Yonemura K, Kawajiri T, et al. Low glycated hemoglobin level is associated with severity of frailty in Japanese elderly diabetes patients. J Diabetes Investig. 2018;9(2):419–25.
Article
CAS
Google Scholar
Yanase T, Yanagita I, Muta K, Nawata H. Frailty in elderly diabetes patients. Endocr J. 2018;65:1–11.
Article
Google Scholar
Abdelhafiz AH, Loo BE, Hensey N, Bailey C, Sinclair A. The U -shaped relationship of traditional cardiovascular risk factors and adverse outcomes in later life. Aging Dis. 2012;3(6):454–64.
PubMed
PubMed Central
Google Scholar
Abdelhafiz AH, Sinclair AJ. Low HbAlc and increased mortality risk-is frailty a confounding factor? Aging Dis. 2015;6(4):262–70.
Article
Google Scholar
Liguori I, Russo G, Aran L, Bulli G, Curcio F, Della-Morte D, et al. Sarcopenia: assessment of disease burden and strategies to improve outcomes. Clin Interv Aging. 2018;13:913–27.
Article
CAS
Google Scholar
Yanagita I, Fujihara Y, Kitajima Y, Tajima M, Honda M, Kawajiri T, et al. A high serum cortisol/DHEA-S ratio is a risk factor for sarcopenia in elderly diabetic patients. J Endocrine Soc. 2019;3(4):801–13.
Article
CAS
Google Scholar
Orentreich N, Brind JL, Rizer RL, Vogelman JH. Age changes and sex differences in serum dehydroepiandrosterone sulfate concentration throughout adulthood. J Clin Endocrinol Metab. 1984;59:551–5.
Article
CAS
Google Scholar
Nawata H, Yanase T, Goto K, Okabe T, Ashida K. Mechanism of action of anti-aging DHEA-S and the replacement of DHEA-S. Mech Aging Dis. 2002;123:1101–6.
Article
CAS
Google Scholar
Leng SX, Cappola AR, Andersen RE, Blackman MR, Koenig K, Blair M, et al. Serum levels of insulin-like growth factor-l (IGF-1) and dehydroepiandrosterone sulfate (DHEA-S), and their relationships with serum interleukin-6, in the geriatric syndrome of frailty. Aging Clin Exp Res. 2004;16(2):153–7.
Article
CAS
Google Scholar
Voznesensky M, Walsh A, Dauser D, Brindisi J, Kenny AM. The relationship between dehydroepiandrosterone and frailty in older men and women. Age Ageing. 2009;38(4):401–6.
Article
CAS
Google Scholar
Baylis D, Bartlett DB, Syddall HE, Ntani G, Gale CR, Cooper C, et al. Immune-endocrine biomarkers as predictors of frailty and mortality: a 10-year longitudinal study in community-dwelling older people. Age. 2013;35:963–71.
Article
CAS
Google Scholar
Swiecicka A, Lunt M, Ahern T, O’Neill TW, Bartfai G, Casanueva FF, et al. Nonandrogenic anabolic hormones predict risk of frailty: European male ageing study prospective data. J Clin Endocrinol Metab. 2017;102(8):2799–806.
Article
Google Scholar
Forti P, Maltoni B, Olivelli V, Pirazzoli GL, Ravaglia G, Zoli M. Serum dehydroepiandrosterone sulfate and adverse health outcomes in older men and women. Rejuvenation Res. 2012;15(4):349–58.
Article
CAS
Google Scholar
Seino Y, Nanjo K, Tajima N, Kadowaki T, Kashiwagi A, Araki E, et al. Committee of the Japan Diabetes Society on the diagnostic criteria of diabetes mellitus: report of the committee on the classification and diagnostic criteria of diabetes mellitus. J Diabetes Investig. 2010;1(5):212–28.
Article
Google Scholar
RRID:AB_2783639, https://scicrunch.org/resolver/RRID:AB_2783639.
RRID:AB_2783638, https://scicrunch.org/resolver/RRID:AB_2783638.
Cruz-Jentoft AJ, Baeyens JP, Bauer JM, Boirie Y, Cederholm T, Landi F, et al. European working group on sarcopenia in older people. Sarcopenia: European consensus on definition and diagnosis: report of the European working group on sarcopenia in older people. Age Ageing. 2010;39(4):412–23.
Article
Google Scholar
Chen LK, Liu LK, Woo J, Assantachai P, Auyeung TW, Bahyah KS, et al. Sarcopenia in Asia: consensus report of the Asian working Group for Sarcopenia. J Am Med Dir Assoc. 2014;15(2):95–101.
Article
Google Scholar
Akirov A, Masri-Iraqi H, Atamna A, Shimon I. Low albumin levels are associated with mortality risk i hospitalized patients. Am J Med. 2017;130(12):1465. https://doi.org/10.1016/j.amjmed.
Article
CAS
PubMed
Google Scholar
Le Couteur DG, Blyth FM, Creasey HM, Handelsman DJ, Naganathan V, Sambrook PN, et al. The association of alanine transaminase with aging, frailty, and mortality. J Gerontol A Biol Sci Med Sci. 2010;65(7):712–7.
Article
Google Scholar
Vespasiani-Gentilucci U, De Vincentis A, Ferrucci L, Bandinelli S, Antonelli Incalzi R, Picardi A. Low alanine aminotransferase levels in the elderly population: frailty, disability, sarcopenia and reduced survival. J Gerontol A Biol Med Sci. 2018;73(7):925–30.
Article
CAS
Google Scholar
Elinav E, Ackerman Z, Maaravi Y, Ben-Dov IZ, Ein-Mor E, Stessman J. Low alanine aminotransferase activity in older people is associate with greater long-term mortality. J Am Geriatr Soc. 2006;54(11):1719–24.
Article
Google Scholar
Vanderlinde RE. Review of pyridoxal phosphate and the transaminases in liver disease. Ann Clin Lab Sci. 1986;16(2):79–93.
CAS
PubMed
Google Scholar
Kjeldby IK, Fosnes GS, Ligaarden SC, Farup PG. Vitamin B6 deficiency and diseases in elderly people--a study in nursing homes. BMC Geriatr. 2013;13:13. https://doi.org/10.1186/1471-2318-13-13.
Article
PubMed
PubMed Central
Google Scholar
Fukui M, Ose H, Nakayama I, Hosoda H, Asano M, Kadono M, et al. Association between urinary albumin excretion and serum dehydroepiandrosterone sulfate concentrations in women with type 2 diabetes. Diabetes Care. 2007;30(7):1886–8.
Article
CAS
Google Scholar
Charlton M, Angulo P, Chalasani N, Merriman R, Viker K, Charatcharoenwitthaya P, et al. Low circulating levels of dehydroepiandrosterone in histologically advanced nonalcoholic fatty liver disease. Hepatology. 2008;47:484–92.
Article
CAS
Google Scholar
Sumida Y, Naitoa Y, Hashimoto E, Aoi W, Takahashi Y, Yonei Y, et al. Science of nonalcoholic fatty liver disease in anti-aging medicine 2011. Anti-aging Medicine. 2012;9:24–33.
Article
Google Scholar
Hakkak R, Bell A, Korourian S. Dehydroepiandrosterone (DHEA) feeding protects liver steatosis in obese breast cancer rat model. Sci Pharm. 2017;85:13–22.
Article
Google Scholar
Teng Y, Radde BN, Litchfield LM, Ivanova MM, Prough RA, Clark BJ, et al. Dehydroepiandrosterone activation of G-protein-coupled estrogen receptor rapidly stimulate microRNA-21 transcription in human hepatocellular carcinoma cells. J Biol Chem. 2015;290:15799–811.
Article
CAS
Google Scholar
Ong KK. Potau N, Petry CJ, Jones R, ness AR, honour JW, et al. opposing influence of prenatal and postnatal weight gain on adrenarche in normal boys and girls. J Clin Endocrinol Metab. 2004;89:2647–51.
Article
CAS
Google Scholar
Corvalan C, Uauy R, Mericq V. Obesity is positively associated with dehydroepiandrosterone sulfate concentrations at 7 y in Chilean children of normal birth weight. Am J Clin Nutr. 2013;97:318–25.
Article
CAS
Google Scholar
Jarecki P, Herman WA, Pawliczak E, Lacka K. Can low SHBG serum concentration be a good early marker of male hypogonadism in metabolic syndrome? Diabetes Metab Syndr Obes. 2019;2:2181. https://doi.org/10.2147/DMSO.S218545.
Article
Google Scholar
Taniguchi S, Yanase T, Haji M, Ishibashi K, Takayanagi R, Nawata H. The antiobesity of dehydroepiandrosterone in castrated or noncastrated obese Zucker male rats. Obes Res. 1995;1(Suppl 5):639–43.
Article
Google Scholar
Villareal DT, Holloszy JO, et al. Effect of DHEA on abdominal fat and insulin action in elderly women and men: a randomized controlled trial. JAMA. 2004;292:2243–8.
Article
CAS
Google Scholar
McNelis JC, Manolopoulos KN, Gathercole LL, Bujalska IJ, Stewart PM, Tomlinson JW, et al. Dehydroepiandrosterone exerts antiglucocorticoid action on human preadipocyte proliferation, differentiation, and glucose uptake. Am J Physiol Endocrinol Metab. 2013;305(9):E1134–44.
Article
CAS
Google Scholar
Ashida K, Goto K, Zhao Y, Okabe T, Yanase T, Takayanagi R, et al. Dehydroepiandrosterone negatively regulates the p38 mitogen-activated protein kinase pathway by a novel mitogen-activated protein kinase phosphatase. Biochim Biophys Acta. 2005;1728(1–2):84–94.
Article
CAS
Google Scholar
Watanabe T, Ashida K, Goto K, Nawata H, Takayanagi R, Yanase T, et al. Dehydroepiandrosterone-enhanced dual specificity protein phosphatase (DDSP) prevents diet -induced and genetic obesity. Biochem Biophys Res Commun. 2015;468(1–2):196–201.
Article
CAS
Google Scholar