Skip to main content

Relationship between fear of falling and fall risk among older patients with stroke: a structural equation modeling



With reduced balance and mobility, older patients with stroke are more susceptible to fear of falling (FOF). A maladaptive form of FOF can cause excessive activity restriction, poor balance, and recurrent falls, forming a self-reinforcing vicious cycle. This study applied and adapted the FOF model to investigate the interaction between FOF and fall risk in older stroke patients.


A cross-sectional study was conducted among 302 older stroke patients aged 60 and over. All participants were invited to complete the FOF, fall risk, physical activity, and balance tests, which were measured by the Falls Efficacy Scale International (FES-I), Self-Rated Fall Risk Questionnaire (FRQ), the long-form International Physical Activity Questionnaire (IPAQ-LF) and the Four-Stage Balance Test (FSBT) respectively. Data were analyzed using structural equation modeling.


The mean age of the respondents was 68.62 ± 7.62 years; 8.94% reported a high level of FOF, and 18.21% reported a moderate level of FOF. The structural equation model showed that FOF was directly associated with fall risk (β=-0.38, p < 0.001), and was indirectly associated with fall risk via physical activity (β=-0.075, p < 0.05) and balance ability (β=-0.123, p < 0.05). Depression (β=-0.47, p < 0.001), fall history (β=-0.13, p < 0.05), and female sex (β=-0.16, p < 0.05) affected FOF, while anxiety was not associated with FOF.


The increased risk of falling in older stroke patients results from a maladaptive FOF affected by depression, fall history, poor balance ability, and limited physical activity. Our results suggest that greater attention should be paid to FOF during stroke recovery and fall prevention. A multifaced intervention program encompassing physiological and psychological factors should be designed to address FOF and prevent falls.

Peer Review reports


The relationship between the fear of falling (FOF) and the risk of falling has drawn broad attention [1]. FOF may serve a useful purpose in heightening self-awareness about adaptive strategies to prevent a future fall [2]. However, in some cases, FOF can be maladaptive in that it stimulates a vicious cycle of deconditioning, thereby making the person more susceptible to a future fall [3]. Even though recent research questioned the extent of the prediction of FOF [4], this negative relationship remains for those with balance/gait impairments [5]. For older patients with stroke, their impaired balance and sensory systems contribute to the high incidence of FOF and falls [6]. Studies show that 32–66% of stroke patients have FOF [7, 8], and 26–73% suffer at least one fall 6 months post-stroke [9]. A high level of FOF and fall incidence can limit rehabilitation exercise, reduce mobility and independence ability, increasing mortality [7]. Studies suggested a mutual relationship between FOF and fall risk. Falls can cause FOF, and then FOF can cause increased fall risk. The two outcomes may be related to other shared risk factors and not causally related [10], and it is still unclear whether they are directly or indirectly linked.

The Fear of Falling Model [11] proposes a way to understand the formation of FOF and how it reinforces fall risk from the perspective of fear-avoidance theory. According to the original model (Fig. 1), FOF is caused by both physiological factors such as fall history and psychological factors such as mood/temperament; these factors cause excessive activity restriction and poor balance, further increasing the risk of falling. This original model forms a self-reinforcing vicious cycle that offers a theoretical basis for studying the relationship between FOF and fall risk. It has been validated in patients with Parkinson’s disease [12]; whether this model applies to older stroke patients and what role FOF plays in the model remains unknown [13].

Several investigations have been conducted regarding the risk factors for FOF and its relationship with fall risk in stroke patients [14,15,16,17,18,19]; they suggested that FOF is a critical indicator of falling; however, these studies investigating the connection between FOF and fall risk lack theoretical underpinnings explaining how physiological and psychological factors induce FOF and fall risk, and they are not supported by detailed assessments of relevant constructs [15, 18]. Theory-based and extensive investigations are needed to develop a further understanding of what FOF means to older stroke patients. Therefore, this cross-sectional study aimed to learn the risk factors of FOF and its relationship with fall risk by building a FOF model for older stroke patients; this might provide new insights in opportunities for the prevention and management of FOF and fall risk in older patients with stroke.

Fig. 1
figure 1

Adapted from Hadjistavropoulos (2011)

Simplified theoretical framework depicting the way from fear of falling towards fall risk.


Study population and data collection

This cross-sectional study was conducted in a hospital in the capital city. With a patient volume of over 2 thousand every day, this hospital receives diverse and sufficiently large patients from the whole country. This enables researchers to recruit targeted populations and prescreen them based on the criteria. A convenience sampling method was adopted. Participants were enrolled from March to September 2022. Inclusion criteria: 60 years and older; well-documented stroke (clinical presentation and MRI scan of the brain, ischemic or hemorrhagic type) and more than 6 months post-stroke; ability to walk independently or using a walker. Exclusion criteria: severe cognitive impairment as defined by a score of less than 20 on the Mini-Mental State Examination (MMSE) [20]; too medically unstable to participate; neurological disease other than stroke; severe mental illness requiring oral medication; not Chinese-speaking. All the participants were informed about the purpose of the study and provided informed consent before the survey. They underwent a questionnaire-based face-to-face survey delivered by trained researchers. The survey took 30–40 min to complete. The estimation criteria proposed by Hair [21] were followed to ensure a sufficient sample size for structural equation modeling. Considering the number of indicators, an estimated power > 80%, and α = 0.05, the estimated sample size was 300. Researchers approached 309 eligible subjects, 5 of whom refused, and 2 dropped out. Finally, complete data from 302 participants were evaluated, which is sufficient for statistical analysis. The present research received ethical approval from the ethics committee of the Chinese PLA General Hospital (S2021-077-01).

The hypothesized model with fear of falling

The original model by Hadjistavropoulos in 2011 (Fig. 1) explained the impact of FOF on fall risk, the mediating role of balance ability, and self-imposed activity restriction. Based on the original model, the hypothesized model was built. To enhance the prediction of the constructs, relevant aspects were added to the model suggested by previous research. First, we embedded depression into the model extension; previous work found that depression as part of the mental state could significantly increase the risk of FOF in patients with stroke [16]. Second, the difference in the compromised sides (e.g., right, left, and bilateral) might affect FOF [22]. Third, the analysis suggested that sensory difficulties such as hearing problems were related to FOF, fall risk, and balance performance [23, 24]. The hypothesized interactions inside the model are presented in Fig. 2.

Fig. 2
figure 2

The hypothesized model with fear of falling and the extension of hearing problems, compromised sides, and depression

Variables and measures

Demographic information included: age, gender, height and weight. Clinical data included: the date of stroke, compromised sides (right or left or bilateral) [22], hearing impairment and visual impairment. Hearing impairment was measured by one single question, “Do you feel you have a hearing loss?” the response options were yes or no [23, 25]. Visual impairment was assessed by the question, “How well can you see from a distance?” the response options were dichotomized into “Well” and “Not well.” [23]. Body Mass Index (BMI) was calculated by weight in kilograms divided by the square of height in meters; BMI ≥ 28.0 kg/m2 indicates obesity [26]. Fall history was represented by the occurrence of at least one fall in the past year [10]. The definition of fall is “an unexpected event in which the individual comes to rest on a lower level such as the ground, floor, or steps.” [27].

Fear of falling

Fear of falling is a related but different construct from balance confidence and balance self-efficacy [28], whereas they are all psychological indicators of balance-related confidence. FOF was assessed using methods including the Falls Efficacy Scale International (FES-I) [29], the Short Falls Efficacy Scale International (Short FES-I) [30], Iconographical Falls Efficacy Scale (Icon-FES) [31], the Survey of Activities and Fear of Falling in the Elderly (SAFE) [32], a visual analogue scale [33], or a dichotomous variable (yes or no) [34]. Balance confidence is usually measured by the Activities-Specific Balance Confidence Scale (ABC) [35]. FES-I is the most commonly used tool for measuring FOF [36]; it was adapted from the Falls Efficacy Scale in 2005 [37] and was validated in stroke patients [38]. FES-I contains 16 activities of both primary and demanding, physical and social [37]. For each item, there are four response items: “not all confident”, “somewhat confident”, “fairly confident”, and “very confident”, labelled as 1 to 4. The sum of the score ranges from 16 to 64 points, with a score of 16 to 19 indicating a high level of FOF, 20 to 27 indicating a moderate level of FOF, and 28 to 64 indicating a low level of FOF [39].

Physical activity behaviour

The long-form International Physical Activity Questionnaire (IPAQ-LF) was used to assess physical activity behaviour [40]. The IPAQ-LF consists of activities with low, moderate and high intensity; the activities’ domains contain leisure time physical activity, domestic and gardening activities, work-related physical activity, and transport-related physical activity. The 27 questions reflect the previous seven days’ activities; total physical activity of metabolic equivalent (MET)-minutes/week was calculated to describe the amount of exercise.

Fall risk

The Self-Rated Fall Risk Questionnaire (FRQ) serves as a fall risk screening tool of the STEADI algorithm [41]; it comprises 12 questions related to the real-life risk factors of falls. The score of the labels can be 0, 1 or 2; a score of 4 and over shows that the patient is at risk [42].

Balance performance

The Four-Stage Balance Test (FSBT) is part of the Centers for Disease Control and Prevention (CDC)-recommended STEADI test protocol for balance function [43]. The patient was instructed to maintain 4 challenging positions without any assisting device (e.g., crutch or stick); each successive position became more difficult to hold. The position was changed every 10s, and the test ended when the subject could no longer maintain a position. Being unable to hold the tandem stance (task number 3) for 10s indicates poor balance function [44].


Depression was measured with the 15-item Geriatric Depression Scale (GDS-15); it is a suitable tool to detect depressive disorder for stroke patients [45], the total score ranges from 0 to 15, and a score of 8 and over indicates the presence of depression.


The 7-item Generalized Anxiety Disorder scale (GAD-7) was used to measure anxiety. It has been used in stroke patients as part of mental health outcomes [46]. The range of scores is 0 to 21; a score of 5 to 9 indicates a low level of anxiety, 10 to 14 indicates a medium level of anxiety, and 15 to 21 indicates a high level of anxiety [47].

Data analysis

The IBM SPSS Statistics 26 was used to record and process data. The statistics were stratified by the FOF category. A one-way analysis of variance (ANOVA) test for continuous variables (height, mass, BMI, FES-I, FRQ, FSBT, GAD-7, GDS-15, IPAQ-LF) and chi-squared tests for categorical variables (all other variables) were conducted to compare the low, moderate and high FOF groups with each other on the variables. A P-value of < 0.05 was considered significant. IBM SPSS Amos 26 Graphics was employed to conduct structural equation modeling. We used the maximum likelihood estimation method to test the model. Cutoff points for the root mean square error of approximation (RMSEA ≤ 0.08 with a confidence interval of 95%), the comparative fit index (CFI ≥ 0.90), as well as the Goodness of fit index (GFI ≥ 0.90) were used to assess proper fitness [48].



The mean age of the participants was 68.62 (SD 7.62) years; 38.4% were female. The mean body mass index was 24.44 (SD 3.29). 8.94% (n = 27) indicated high FOF, and 18.21% (n = 55) reported moderate FOF. Further, 33.8% (n = 102) had experienced at least one fall in the past year. Table 1 shows the comparisons of the participant characteristics among the low (n = 220), moderate (n = 55), and high (n = 27) levels of FOF groups. Gender, age, marital status, fall history, visual and hearing problems, fall risk, activity, balance, depression, and anxiety were prominent in participants with different levels of FOF.

Table 1 Participant characteristics (N = 302)

Model effects

The structural equation modeling was processed with Amos, and all items for each construct demonstrated reliable factor loadings. The model produced adequate fit (χ2 = 255.34, df = 244, p < 0.001, RMSEA = 0.01, CFI = 1.00, GFI = 0.94), and all parameters indicated goodness of fit. The final model is illustrated in Fig. 3.

Fig. 3
figure 3

The final model from the structural equation modeling predicts older stroke patients’ fear of falling and fall risk using the fear of falling model. Only significant paths are shown. *p < 0.05, **p < 0.001

Factors associated with fall risk

As hypothesized, FOF (β=-0.38, p < 0.001), activity (β=-0.25, p < 0.001), balance ability (β=-0.19, p < 0.05), hearing problems (β = 0.25, p < 0.001) and anxiety (β = 0.19, p < 0.05) were associated with fall risk. Analysis for indirect effects found that physical activity behaviour (β=-0.075, p < 0.05, 95% CI -0.154 to -0.023), balance ability (β=-0.123, p < 0.05, 95% CI -0.213 to -0.007) acted as mediators separately between FOF and fall risk. Physical activity and balance ability could play a chain mediating role between FOF and fall risk (β=-0.059, p < 0.05, 95% CI -0.151 to -0.020). Unlike the hypothesis, visual problems and gender were unrelated to fall risk (p > 0.05).

Factors associated with FOF

According to the final model, depression (β=-0.47, p < 0.001), fall history (β=-0.13, p < 0.05), female sex (β=-0.16, p < 0.05), left or right compromised side (β = 0.11, p < 0.05) predicted worse FOF. Unlike the hypothesis, anxiety, visual, and hearing problems were not directly associated with FOF (p > 0.05).

Factors associated with balance ability and activity behaviour

FOF (β = 0.64, p < 0.001) was the only construct that predicted balance ability. Gender, hearing or visual problems were unrelated to balance ability (p > 0.05). Good balance ability (β = 0.37, p < 0.001) was associated with active activity behaviour; anxiety (β=-0.26, p < 0.001) and FOF (β = 0.31, p < 0.001) were negative predictors of activity behaviour.


A model of FOF for older patients with stroke was developed in the study. It illustrated the influence of physiological and psychological factors on the risk of falling. The model initially confirmed the maladaptive form of FOF and indicated the following main findings: firstly, FOF directly affected fall risk or indirectly affected fall risk through balance ability and activity behaviour pathways. Numerous studies proved that FOF interferes with daily activity, affecting individuals’ physical well-being [2, 49]. FOF patients tend to adopt sedentary lifestyles, reducing both physical and social activities as a way to avoid falls; this can prevent falls in the short period, but in the long run, this kind of self-imposed reduction of daily activities causes a loss of dependence, functional decline, deconditioning and muscle atrophy, thereby contributing to further falls [50]. In line with our research, the vicious path still applies to older stroke patients and may lead to severe consequences. Performance of daily activity is an essential part of rehabilitation for stroke recovery [51]; when patients adopt an activity-restricted lifestyle, the recovery of limb function is jeopardized, and rehabilitation is impeded, leading to reduced quality of life.

Secondly, depression was a more critical psychological factor related to FOF instead of anxiety, as illustrated by the final model. There were contradicting facts on the effects of anxiety and depressive symptoms on FOF; one study placed anxiety adjacent to FOF and suggested that FOF may arise from general anxiety [52]. A meta-analysis suggested anxiety as a risk factor for FOF [16]. But a cross-sectional survey found that depression was correlated with the FOF scores, while anxiety was uncorrelated with FOF [53]. A longitudinal study found an independent association between incident FOF and depressive symptoms [54]. Our study supported the relationship between depression and FOF. According to the Chinese Classification and Diagnostic Criteria of Mental Disorders, 3rd Edition (CCMD-3), anxiety symptoms were upwardly hyperactive and characterised mainly by nervousness without a clear object or specific content. Depressive symptoms were inhibited downward and dominated by a depressed state of mind that could range from grumpy or grief [55]. In this sense, depression is more related to the avoidance of activity after a stroke due to low mood or motivation, contributing to a bidirectional, mutually reinforcing relationship among depressive symptoms, FOF, and activity restrictions [56]. Our results suggested that compared to anxiety, depression might be a more important factor to consider when tailoring interventions to alleviate FOF for older patients with stroke.

Thirdly, female sex, fall history, and compromised sides were related to FOF, while neither hearing nor visual problems were associated with FOF. It was reported that women showed significantly worse FOF conditions than men [57]; this gender difference still applies to older stroke patients. FOF in women over 60 years of age has been associated with factors such as menopause, which may generate a decrease in bone mineral mass and hormones [58]. The compromised sides had a weak association with FOF, and according to the univariate analysis of Table 1, compromised sides were not related to different levels of FOF; this is a controversial result and needs further study. Consistent with the previous study [59], hearing problems tended to affect fall risk more compared to FOF; this could be reflected during the investigation when patients with serious visual and hearing issues denied the presence of FOF. The reason could be that FOF is related to the level of self-imposed danger of falling [60]. When the perceptions of the danger of falling are in line with the actual balance ability, FOF itself will encourage positive, protective changes to behaviour [18]. But due to the impaired sensory systems, older stroke patients are more likely to over/under-estimating the danger of falling; this mismatch between perception and reality may jeopardise the adaptive side of FOF.

Strengths and limitations

The study has a number of strengths: To date, there is limited evidence about how the FOF theoretical framework is applied to older patients with stroke, and this is the first investigation on the interrelationship of FOF and fall risk together with physiological and psychological constructs using suitable and reliable measurement tools. We used activity restrictions as a direct target outcome rather than measured it via other variables, such as FOF, and the primary constructs of the final FOF model were measured by questionnaires with good validity and reliability. Further, the original framework was expanded and adjusted to be more adaptable to stroke patients, which offers an insightful way to study FOF and falls for future research.

But there are still limitations: some diseases like hypertension and diabetes were not taken into consideration, which may have helped to gain more insight into possible risks of FOF and fall risk. Fall history was measured by falls in the past year, which caused recalling bias, and fall risk was assessed by a self-rated questionnaire; it might be part of the FOF construct; more objective measurement methods should be formulated in future research. Regarding the possession of data collection, we used a convenience sample of older stroke patients; data was collected in outpatient and inpatient departments, so our findings could not be extrapolated to a broader range and more vulnerable populations. Further, this cross-sectional study offers no prospective conclusion about the observed relationship between FOF and fall risk.


The increased risk of falling in older stroke patients results from a maladaptive FOF affected by depression, anxiety, past falls, poor balance, and limited activity. Our results support the previous finding about the FOF theoretical framework [13], suggesting more significant attention to FOF during stroke recovery and fall prevention. A multifaced intervention program encompassing physiological and psychological factors should be designed. Besides, the distinction between objective reality and subjective perception of fall risk requires further studies; qualitative research may help explain the formation of the difference. In addition, our results show that psychological factors, female gender, and fall history should be considered when tailoring interventions for older stroke patients to address falls.

Data Availability

The datasets used during the study are available from the author upon reasonable request. Please get in touch with Yuanyuan Chen through e-mail:



Fear of Falling


Body mass index


The Falls Efficacy Scale International


The Self-Rated Fall Risk Questionnaire


The Four-Stage Balance Test


The 7-item Generalized Anxiety Disorder scale


The 15-item Geriatric Depression Scale


Mini-Mental State Examination


The long-form International Physical Activity Questionnaire


Standard deviation


  1. Liu TW, Ng GYF, Chung RCK, Ng SSM. Decreasing fear of falling in chronic stroke survivors through cognitive behavior therapy and task-oriented training. Stroke. 2018. Strokeaha118022406.

  2. Landers MR, Nilsson MH. A theoretical framework for addressing fear of falling avoidance behavior in Parkinson’s disease. Physiother Theory Pract. 2022:1–17.

  3. Landers MR, Oscar S, Sasaoka J, Vaughn K. Balance confidence and fear of falling avoidance behavior are most predictive of falling in older adults: prospective analysis. Phys Ther. 2016;96(4):433–42.

    Article  PubMed  Google Scholar 

  4. Weijer RHA, Hoozemans MJM, Meijer OG, van Dieën JH, Pijnappels M. The short- and long-term temporal relation between falls and concern about falling in older adults without a recent history of falling. PLoS ONE. 2021;16(7):e0253374.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Allali G, Ayers EI, Holtzer R, Verghese J. The role of postural instability/gait difficulty and fear of falling in predicting falls in non-demented older adults. Arch Gerontol Geriatr. 2017;69:15–20.

    Article  PubMed  Google Scholar 

  6. Quigley PA. Redesigned fall and injury management of patients with stroke. Stroke. 2016;47(6):e92–4.

    Article  PubMed  Google Scholar 

  7. Schmid AA, Arnold SE, Jones VA, Ritter MJ, Sapp SA, Van Puymbroeck M. Fear of falling in people with chronic stroke. Am J Occup Ther. 2015;69(3):6903350020.

    Article  PubMed  Google Scholar 

  8. Schmid AA, Acuff M, Doster K, Gwaltney-Duiser A, Whitaker A, Damush T, et al. Poststroke fear of falling in the hospital setting. Top Stroke Rehabil. 2009;16(5):357–66.

    Article  PubMed  Google Scholar 

  9. Samuelsson CM, Hansson PO, Persson CU. Early prediction of falls after stroke: a 12-month follow-up of 490 patients in the fall study of Gothenburg (FallsGOT). Clin Rehabil. 2019;33(4):773–83.

    Article  PubMed  Google Scholar 

  10. Yokoi K, Miyai N, Utsumi M, Hattori S, Kurasawa S, Hayakawa H et al. Relationship between fall history and self-perceived motor fitness in community-dwelling people: a cross-sectional study. J Clin Med. 2020;9(11).

  11. Hadjistavropoulos T, Delbaere K, Fitzgerald TD. Reconceptualizing the role of fear of falling and balance confidence in fall risk. J Aging Health. 2011;23(1):3–23.

    Article  PubMed  Google Scholar 

  12. Landers MR, Jacobson KM, Matsunami NE, McCarl HE, Regis MT, Longhurst JK. A vicious cycle of fear of falling avoidance behavior in Parkinson’s disease: a path analysis. Clin Park Relat Disord. 2021;4:100089.

    PubMed  PubMed Central  Google Scholar 

  13. Peeters G, Bennett M, Donoghue OA, Kennelly S, Kenny RA. Understanding the aetiology of fear of falling from the perspective of a fear-avoidance model - A narrative review. Clin Psychol Rev. 2020;79:101862.

    Article  PubMed  Google Scholar 

  14. Dhar M, Kaeley N, Mahala P, Saxena V, Pathania M. The prevalence and Associated Risk factors of fear of fall in the Elderly: A Hospital-Based, cross-sectional study. Cureus. 2022;14(3):e23479.

    PubMed  PubMed Central  Google Scholar 

  15. Aihara S, Kitamura S, Dogan M, Sakata S, Kondo K, Otaka Y. Patients’ thoughts on their falls in a rehabilitation hospital: a qualitative study of patients with stroke. BMC Geriatr. 2021;21(1):713.

    Article  PubMed  PubMed Central  Google Scholar 

  16. Xie Q, Pei J, Gou L, Zhang Y, Zhong J, Su Y, et al. Risk factors for fear of falling in stroke patients: a systematic review and meta-analysis. BMJ Open. 2022;12(6):e056340.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jalayondeja C, Sullivan PE, Pichaiyongwongdee S. Six-month prospective study of fall risk factors identification in patients post-stroke. Geriatr Gerontol Int. 2014;14(4):778–85.

    Article  PubMed  Google Scholar 

  18. Ellmers TJ, Wilson MR, Norris M, Young WR. Protective or harmful? A qualitative exploration of older people’s perceptions of worries about falling. Age Ageing. 2022;51(4).

  19. Fitzsimons CF, Nicholson SL, Morris J, Mead GE, Chastin S, Niven A. Stroke survivors’ perceptions of their sedentary behaviours three months after stroke. Disabil Rehabil. 2022;44(3):382–94.

    Article  PubMed  Google Scholar 

  20. Chiu HFK, Lee H-cB, Chung WS, Kwong PKJHKJP. Reliability and validity of the cantonese version of mini-mental state examination-a preliminary study. 1994;4:25.

  21. Hair JF Jr, Black WC, Babin BJ, Anderson PE. Multivariate Data Analysis 7th Edition. Upper Saddle River: Pearson Pretince Hall. 2010. Available from:

  22. Xu T, Clemson L, O’Loughlin K, Lannin NA, Dean C, Koh G. Risk factors for Falls in Community Stroke Survivors: a systematic review and Meta-analysis. Arch Phys Med Rehabil. 2018;99(3):563–73e565.

    Article  PubMed  Google Scholar 

  23. Viljanen A, Kulmala J, Rantakokko M, Koskenvuo M, Kaprio J, Rantanen T. Fear of falling and coexisting sensory difficulties as predictors of mobility decline in older women. J Gerontol A Biol Sci Med Sci. 2012;67(11):1230–37.

    Article  PubMed  Google Scholar 

  24. Vitkovic J, Le C, Lee SL, Clark RA. The contribution of hearing and hearing loss to Balance Control. Audiol Neurootol. 2016;21(4):195–202.

    Article  PubMed  Google Scholar 

  25. Nondahl DM, Cruickshanks KJ, Wiley TL, Tweed TS, Klein R, Klein BE. Accuracy of self-reported hearing loss. Audiology. 1998;37(5):295–301.

    Article  CAS  PubMed  Google Scholar 

  26. Zhou BF. Predictive values of body mass index and waist circumference for risk factors of certain related diseases in chinese adults–study on optimal cut-off points of body mass index and waist circumference in chinese adults. Biomed Environ Sci. 2002;15(1):83–96.

    PubMed  Google Scholar 

  27. Lamb SE, Jørstad-Stein EC, Hauer K, Becker C. Development of a common outcome data set for fall injury prevention trials: the Prevention of Falls Network Europe consensus. J Am Geriatr Soc. 2005;53(9):1618–22.

    Article  PubMed  Google Scholar 

  28. Myers AM, Powell LE, Maki BE, Holliday PJ, Brawley LR, Sherk W. Psychological indicators of balance confidence: relationship to actual and perceived abilities. J Gerontol A Biol Sci Med Sci. 1996;51(1):M37–43.

    Article  CAS  PubMed  Google Scholar 

  29. Tinetti ME, Richman D, Powell L. Falls efficacy as a measure of fear of falling. J Gerontol. 1990;45(6):P239–43.

    Article  CAS  PubMed  Google Scholar 

  30. Kempen GI, Yardley L, van Haastregt JC, Zijlstra GA, Beyer N, Hauer K, et al. The short FES-I: a shortened version of the falls efficacy scale-international to assess fear of falling. Age Ageing. 2008;37(1):45–50.

    Article  PubMed  Google Scholar 

  31. Delbaere K, Smith ST, Lord SR. Development and initial validation of the Iconographical Falls Efficacy Scale. J Gerontol A Biol Sci Med Sci. 2011;66(6):674–80.

    Article  PubMed  Google Scholar 

  32. Lachman ME, Howland J, Tennstedt S, Jette A, Assmann S, Peterson EW. Fear of falling and activity restriction: the survey of activities and fear of falling in the elderly (SAFE). J Gerontol B Psychol Sci Soc Sci. 1998;53(1):P43–50.

    Article  CAS  PubMed  Google Scholar 

  33. Scheffer AC, Schuurmans MJ, vanDijk N, van der Hooft T, de Rooij SE. Reliability and validity of the visual analogue scale for fear of falling in older persons. J Am Geriatr Soc. 2010;58(11):2228–30.

    Article  PubMed  Google Scholar 

  34. Goldberg A. The five-times-sit-to-stand-test (FTSST), the short version of the activities-specific balance confidence (ABC) scale, and fear of falling predict step execution time (SET) in older adults. Arch Gerontol Geriatr. 2012;54(3):434–8.

    Article  PubMed  Google Scholar 

  35. Powell LE, Myers AM. The Activities-specific balance confidence (ABC) Scale. J Gerontol A Biol Sci Med Sci. 1995;50a(1):M28–34.

    Article  CAS  PubMed  Google Scholar 

  36. Scholz M, Haase R, Trentzsch K, Weidemann ML, Ziemssen T. Fear of falling and falls in people with multiple sclerosis: a literature review. Mult Scler Relat Disord. 2021;47:102609.

    Article  PubMed  Google Scholar 

  37. Yardley L, Beyer N, Hauer K, Kempen G, Piot-Ziegler C, Todd C. Development and initial validation of the Falls Efficacy Scale-International (FES-I). Age Ageing. 2005;34(6):614–9.

    Article  PubMed  Google Scholar 

  38. Monjezi S, Negahban H, Tajali S, Mofateh R, Molhemi F, Mostafaee N. Psychometric properties of the Persian-version of the Activities-specific balance confidence scale and fall efficacy scale-international in iranian patients with multiple sclerosis. Physiother Theory Pract. 2021;37(8):935–44.

    Article  PubMed  Google Scholar 

  39. Delbaere K, Close JC, Mikolaizak AS, Sachdev PS, Brodaty H, Lord SR. The Falls Efficacy Scale International (FES-I). A comprehensive longitudinal validation study. Age Ageing. 2010;39(2):210–6.

    Article  PubMed  Google Scholar 

  40. Hagströmer M, Oja P, Sjöström M. The International Physical Activity Questionnaire (IPAQ): a study of concurrent and construct validity. Public Health Nutr. 2006;9(6):755–62.

    Article  PubMed  Google Scholar 

  41. Phelan EA, Mahoney JE, Voit JC, Stevens JA. Assessment and management of fall risk in primary care settings. Med Clin North Am. 2015;99(2):281–93.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Rubenstein LZ, Vivrette R, Harker JO, Stevens JA, Kramer BJ. Validating an evidence-based, self-rated fall risk questionnaire (FRQ) for older adults. J Saf Res. 2011;42(6):493–9.

    Article  Google Scholar 

  43. Lee R. The CDC’s STEADI Initiative: promoting older Adult Health and Independence through fall Prevention. Am Fam Physician. 2017;96(4):220–1.

    PubMed  PubMed Central  Google Scholar 

  44. Kocica J, Kolcava J, Sladeckova M, Stourac P, Vlckova E, Dosbaba F, et al. Intensive Circuit Class Therapy in patients with relapsing-remitting multiple sclerosis. J Rehabil Med. 2022;54:jrm00267.

    Article  PubMed  Google Scholar 

  45. Burton LJ, Tyson S. Screening for mood disorders after stroke: a systematic review of psychometric properties and clinical utility. Psychol Med. 2015;45(1):29–49.

    Article  PubMed  Google Scholar 

  46. Li M, Wang Y, Li K, Xu X, Zhuang L. The efficacy and safety of Jin’s three-needle therapy vs. placebo acupuncture on anxiety symptoms in patients with post-stroke anxiety: a study protocol for a randomized controlled trial. Front Psychiatry. 2022;13:941566.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Spitzer RL, Kroenke K, Williams JB, Löwe B. A brief measure for assessing generalized anxiety disorder: the GAD-7. Arch Intern Med. 2006;166(10):1092–7.

    Article  PubMed  Google Scholar 

  48. Jackson DL, Gillaspy JA, Purc-Stephenson R. Reporting practices in confirmatory factor analysis: an overview and some recommendations. Psychol Methods. 2009;14(1):6–23.

    Article  PubMed  Google Scholar 

  49. Hussain N, Hansson PO, Persson CU. Prediction of fear of falling at 6 months after stroke based on 279 individuals from the fall study of Gothenburg. Sci Rep. 2021;11(1):13503.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Schoene D, Heller C, Aung YN, Sieber CC, Kemmler W, Freiberger E. A systematic review on the influence of fear of falling on quality of life in older people: is there a role for falls? Clin Interv Aging. 2019;14:701–19.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Prior PL, Suskin N. Exercise for stroke prevention. Stroke Vasc Neurol. 2018;3(2):59–68.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Sakurai R, Fujiwara Y, Yasunaga M, Suzuki H, Kanosue K, Montero-Odasso M, et al. Association between hypometabolism in the supplementary motor area and fear of falling in older adults. Front Aging Neurosci. 2017;9:251.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Park S, Cho OH. Fear of falling and related factors during everyday activities in patients with chronic stroke. Appl Nurs Res. 2021;62:151492.

    Article  PubMed  Google Scholar 

  54. Rivasi G, Kenny RA, Ungar A, Romero-Ortuno R. Predictors of incident fear of falling in community-dwelling older adults. J Am Med Dir Assoc. 2020;21(5):615–20.

    Article  PubMed  Google Scholar 

  55. Tiller JWG. Depress Anxiety. 2013;199(S6):28–S31.

    Google Scholar 

  56. Choi NG, Gell NM, DiNitto DM, Marti CN, Kunik ME. Depression and activity-limiting fall worry among older adults: longitudinal reciprocal relationships. Int Psychogeriatr. 2020;32(4):495–504.

    Article  PubMed  Google Scholar 

  57. Preissner CE, Kaushal N, Charles K, Knäuper B. A Protection motivation theory approach to understanding how fear of falling affects physical activity determinants in older adults. J Gerontol B Psychol Sci Soc Sci. 2022.

  58. Hita-Contreras F, Martínez-Amat A, Lomas-Vega R, Álvarez P, Aránega A, Martínez-López E, et al. Predictive value of stabilometry and fear of falling on falls in postmenopausal women. Climacteric. 2013;16(5):584–9.

    Article  CAS  PubMed  Google Scholar 

  59. Lach HW, Lozano AJ, Hanlon AL, Cacchione PZ. Fear of falling in sensory impaired nursing home residents. Aging Ment Health. 2020;24(3):474–80.

    Article  PubMed  Google Scholar 

  60. Walsh ME, Galvin R, Williams DJP, Harbison JA, Murphy S, Collins R, et al. The experience of recurrent fallers in the first year after stroke. Disabil Rehabil. 2019;41(2):142–9.

    Article  PubMed  Google Scholar 

Download references


Not applicable.


This work was supported by the National Key Research and Development Program of China (2018YFC2001400).

Author information

Authors and Affiliations



Yuanyuan Chen and Hongying Pi were credited for the conception and design of the paper, drafting the manuscript or revising it critically for important intellectual content; All authors collected the data and committed to data analysis and interpretation; Hongying Pi devoted to the final approval of the version to be published.

Corresponding author

Correspondence to Hongying Pi.

Ethics declarations

Ethics approval and consent to participate

The present study received ethical approval from the Ethics Committee of Chinese PLA General Hospital (S2021-077-01). All methods were carried out in accordance with the relevant guidelines and regulations, and informed consent was obtained from all subjects.

Consent for publication

Not applicable.

Competing interests

The authors declared that they have no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit The Creative Commons Public Domain Dedication waiver ( applies to the data made available in this article, unless otherwise stated in a credit line to the data.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Y., Du, H., Song, M. et al. Relationship between fear of falling and fall risk among older patients with stroke: a structural equation modeling. BMC Geriatr 23, 647 (2023).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: