Herrera AC, Prince M, Knapp M, et al. Improving healthcare for people with dementia. Coverage, quality and costs now and in the future. World Alzheimer Report. 2016;2016.
Gaugler J, James B, Johnson T, et al. 2016 Alzheimer's disease facts and figures. Alzheimers Dement. 2016;12(4):459–509.
Article
Google Scholar
Burns A, Byrne EJ, Maurer K. Alzheimer's disease. BMJ (Clinical research ed). 2009;338(7692):467–71.
Google Scholar
Querfurth HW, Laferla FM. Alzheimer's disease. N Engl J Med. 2010;362(4):329.
Article
CAS
PubMed
Google Scholar
Todd S, Barr S, Roberts M, et al. Survival in dementia and predictors of mortality: a review. Int J Geriatr Psychiatry. 2013;28(11):1109–24.
PubMed
Google Scholar
Vanhanen M, Kivipelto M, Koivisto K, et al. APOE-epsilon4 is associated with weight loss in women with AD: a population-based study. Neurology. 2001;56(5):655–9.
Article
CAS
PubMed
Google Scholar
Cedazomínguez A. Apolipoprotein E and Alzheimer’s disease: molecular mechanisms and therapeutic opportunities. J Cell Mol Med. 2007;11(6):1227–38.
Article
CAS
Google Scholar
Rolland Y, Kan GAV, Vellas B. Physical activity and Alzheimer's disease: from prevention to therapeutic perspectives. J Am Med Dir Assoc. 2008;9(6):390–405.
Article
PubMed
Google Scholar
Fratiglioni L, Paillard-Borg S, Winblad B, Fratiglioni L, Paillard-Borg S, Winblad B. An active and socially integrated lifestyle in late life might protect against dementia. Lancet Neurol. 3, 343-353. Lancet Neurol. 2004;3(6):343–53.
Article
PubMed
Google Scholar
Hertzog C, Kramer AF, Wilson RS, et al. Enrichment effects on adult cognitive development: can the functional capacity of older adults be preserved and enhanced? Psychol Sci Public Interest. 2008;9(1):1–65.
Article
PubMed
Google Scholar
Kramer AF, Bherer L, Colcombe SJ, et al. Environmental influences on cognitive and brain plasticity during aging. J Gerontol. 2004;59(9):M940.
Article
Google Scholar
Lautenschlager NT, Cox KL, Flicker L, et al. Effect of physical activity on cognitive function in older adults at risk for Alzheimer disease: A randomized trial. JAMA- J Am Med Assoc. 2008;300(9):1027-37. https://doi.org/10.1001/jama.300.9.1027 [published Online First: Epub Date].
Article
CAS
PubMed
Google Scholar
Kramer AF, Erickson KI, Colcombe SJ. Exercise, cognition, and the aging brain. J Appl Physiol. 2006;101(4):1237–42.
Article
PubMed
Google Scholar
Heyn P, Abreu BC, Ottenbacher KJ. The effects of exercise training on elderly persons with cognitive impairment and dementia: a meta-analysis. Arch Phys Med Rehabil. 2004;85(10):1694–704.
Article
PubMed
Google Scholar
Wang Y, Shen FF, Zhu Y, et al. Clinical Effects of Aerobic Exercises Training with Moderate and High Intensity in Alzheimer's Disease Treatment. Chin J Clin Oncol Neurosci. 2014;22(5):504-9
Wang SY, Zhu Y, Zhang Q. The effect of aerobic exercise of middle intensity on cognitive and motor functions of patients with Alzheimer's disease. Chin J Rehabil Med. 2014;36(10):765–8.
Google Scholar
Wang Wei ZY, Yang Si Y. Effects of aerobic exercise on cognition function and activity of daily life of patients with Alzheimer's disease. Chinese. J Rehabil Med. 2014;29(12):1151–5.
Google Scholar
Yang SY, Shan CL, Qing H, et al. The effects of aerobic exercise on cognitive function of Alzheimer's disease patients. CNS Neurol Disord Drug Targets. 2015;14(10):1292–7.
Article
CAS
PubMed
Google Scholar
Yan L, Wang W, Shen F. A clinical research of aerobic exercises with different training time in the treatment of mild to moderate Alzheimer's disease. Chin J Rehabil Med. 2015;30(8):771–6.
Google Scholar
Yin LTW, Yi Z. Aerobic exercise improves cognitive function in patients with Alzheimer's disease. Chin J Rehabil. 2017;32(5):386–9.
Google Scholar
Yan MHHL, Hui HZ. Effect of aerobic exercise on abilities of daily life, cognitive function and psychological symptoms in patients with mild to moderate Alzheimer's disease. Chin J Multiple Organ Dis Elder. 2016;15(6):451–4.
Google Scholar
Fajersztajn L, Cordeiro RC, Andreoni S, et al. Effects of functional physical activity on the maintenance of motor function in Alzheimer's disease. Dement Neuropsychol. 2008;2(3):233–40.
Article
PubMed
PubMed Central
Google Scholar
Arcoverde C, Deslandes A, Moraes H, et al. Treadmill training as an augmentation treatment for Alzheimer's disease: a pilot randomized controlled study. Arq Neuropsiquiatr. 2014;72(3):190–6.
Article
PubMed
Google Scholar
Venturelli M, Scarsini R, Schena F. Six-month walking program changes cognitive and ADL performance in patients with Alzheimer. Am J Alzheimers Dis Other Dement. 2011;26(5):381.
Article
Google Scholar
Vreugdenhil A, Cannell J, Davies A, et al. A community-based exercise programme to improve functional ability in people with Alzheimer’s disease: a randomized controlled trial. Scand J Caring Sci. 2012;26(1):12–9.
Article
PubMed
Google Scholar
Kunze M, Voss P, Büttner HH, et al. Effects of physical activity training in patients with Alzheimer’s dementia: results of a pilot RCT study. PLoS One. 2015;10(4):e0121478.
Article
CAS
Google Scholar
Hoffmann K, Sobol NA, Frederiksen KS, et al. Moderate-to-high intensity physical exercise in patients with Alzheimer's disease: a randomized controlled trial. J Alzheimers Dis Jad. 2015;11(7):P324–P25.
Google Scholar
Chapman SB, Aslan S, Spence JS, et al. Shorter term aerobic exercise improves brain, cognition, and cardiovascular fitness in aging. Front Aging Neurosci. 2013;5(75):75.
PubMed
PubMed Central
Google Scholar
Farina N, Rusted J, Tabet N. The effect of exercise interventions on cognitive outcome in Alzheimer's disease: a systematic review. Int Psychogeriatr. 2014;26(1):9–18.
Article
PubMed
Google Scholar
Yu F, Kolanowski AM, Strumpf NE, et al. Improving cognition and function through exercise intervention in Alzheimer's disease. J Nurs Scholarsh. 2006;38(4):358–65.
Article
PubMed
Google Scholar
Rao AK, Chou A, Bursley B, et al. Systematic review of the effects of exercise on activities of daily living in people with Alzheimer’s disease. The American journal of occupational therapy : official publication of the American occupational. Therapy Association. 2014;68(1):50–6.
Google Scholar
Smith PJ, Blumenthal JA, Hoffman BM, et al. Aerobic exercise and neurocognitive performance: a meta-analytic review of randomized controlled trials. Psychosom Med. 2010;72(3):239–52.
Article
PubMed
PubMed Central
Google Scholar
Machado S, Filho A, Wilbert M, et al. Physical exercise as stabilizer for Alzheimer’s disease cognitive decline: current status. Clin Pract Epidemiol Mental Health Cp Emh. 2017;13(1):181–4.
Article
PubMed
Google Scholar
Gallaway PJ, Miyake H, Buchowski MS, et al. Physical activity: a viable way to reduce the risks of mild cognitive impairment, Alzheimer’s disease, and vascular dementia in older adults. Brain Sci. 2017;7(2):22.
Article
PubMed Central
CAS
Google Scholar
Stephen R, Hongisto K, Solomon A, et al. Physical activity and Alzheimer’s disease: a systematic review. The journals of gerontology Series A. Biol Sci Med Sci. 2017;72(6):733–9.
Google Scholar
Mandolesi L, Polverino A, Montuori S, et al. Effects of physical exercise on cognitive functioning and wellbeing: biological and psychological benefits. Front Psychol 2018;9:509.
Tyndall AV, Clark CM, Anderson TJ, et al. Protective effects of exercise on cognition and brain health in older adults. Exerc Sport Sci Rev. 2018;46(4):215–23. https://doi.org/10.1249/jes.0000000000000161 [published Online First: Epub Date]|.
Article
PubMed
Google Scholar
Gelfo F, Mandolesi L, Serra L, et al. The neuroprotective effects of experience on cognitive functions: evidence from animal studies on the neurobiological bases of brain reserve. Neuroscience. 2018;370:218–35. https://doi.org/10.1016/j.neuroscience.2017.07.065 published Online First: Epub Date.
Article
CAS
PubMed
Google Scholar
Blasko I, Jungwirth S, Kemmler G, et al. Leisure time activities and cognitive functioning in middle European population-based study. Eur Geriatr Med. 2014;5(3):200–7.
Article
Google Scholar
Franzmeier N, Göttler J, Grimmer T. Resting-state connectivity of the left frontal cortex to the default mode and dorsal attention network supports Reserve in Mild Cognitive Impairment. Front Aging Neurosci. 2017;9:264.
Article
PubMed
PubMed Central
Google Scholar
Franzmeier N, Hartmann JC, Taylor ANW, et al. Left frontal hub connectivity during memory performance supports Reserve in Aging and Mild Cognitive Impairment. J Alzheimers Dis. 2017;59(4):1381–92.
Article
CAS
PubMed
PubMed Central
Google Scholar
Freret T, Gaudreau P, Schumann-Bard P, et al. Mechanisms underlying the neuroprotective effect of brain reserve against late life depression. J Neural Transm. 2015;122(1):55–61.
Article
Google Scholar
H Ö, Savikko N, Strandberg TE, et al. Effects of exercise on cognition: the Finnish Alzheimer disease exercise trial: a randomized, controlled trial. J Am Geriatr Soc. 2016;64(4):731–8.
Article
Google Scholar
Cass SP. Alzheimer's disease and exercise: a literature review. Curr Sports Med Rep. 2017;16(1):19.
Article
PubMed
Google Scholar
Yu F. Guiding research and practice: a conceptual model for aerobic exercise training in Alzheimer's disease. Am J Alzheimers Dis Other Dement. 2011;26(3):184.
Article
Google Scholar
Roach KE, Tappen RM, Kirk-Sanchez N, et al. A randomized controlled trial of an activity specific exercise program for individuals with Alzheimer disease in long-term care settings. J Geriatr Phys Ther. 2011;34(2):50.
Article
PubMed
PubMed Central
Google Scholar
Brown BM, Peiffer JJ, Martins RN. Multiple effects of physical activity on molecular and cognitive signs of brain aging: can exercise slow neurodegeneration and delay Alzheimer’s disease? Mol Psychiatry. 2013;18(8):864–74.
Article
CAS
PubMed
Google Scholar
Nelson M, W Jack R, Steven N, Blair, Duncan PW, et al. ACSM/AHA recommendations, physical activity and public health in older adults. 2007.
Cayon A. PAHO WHO | global recommendations on physical activity for health. 2016.
Barnard ND, Bush AI, Ceccarelli A, et al. Dietary and lifestyle guidelines for the prevention of Alzheimer's disease. Neurobiol Aging. 2014;35(Suppl 2):S74–8.
Article
PubMed
Google Scholar
Lucia A, Ruiz JR. Exercise is beneficial for patients with Alzheimer's disease: a call for action. Br J Sports Med. 2011;45(6):468–9.
Article
PubMed
Google Scholar
Groot C, Hooghiemstra AM, Raijmakers PGHM, et al. The effect of physical activity on cognitive function in patients with dementia: a meta-analysis of randomized control trials. Ageing Res Rev. 2016;25:13–23.
Article
CAS
PubMed
Google Scholar
Kramer AF, Colcombe SJ, Mcauley E, et al. Enhancing brain and cognitive function of older adults through fitness training. J Mol Neurosci. 2003;20(3):213–21.
Article
CAS
PubMed
Google Scholar
van Gelder BM, Tijhuis MA, Kalmijn S, et al. Physical activity in relation to cognitive decline in elderly men: the FINE study. Neurology. 2004;63(12):2316–21.
Article
PubMed
Google Scholar
Hoffmann K, Frederiksen KS, Sobol NA, et al. Preserving cognition, quality of life, physical health and functional ability in Alzheimer's disease: the effect of physical exercise (ADEX trial): rationale and design. Neuroepidemiology. 2013;41(3–4):198–207.
Article
PubMed
Google Scholar
Yu F, Bronas UG, Suma K, et al. Effects of aerobic exercise on cognition and hippocampal volume in Alzheimer’s disease: study protocol of a randomized controlled trial (the FIT-AD trial). Trials. 2014;15(1):394.
Article
PubMed
PubMed Central
Google Scholar
Erickson KI, Prakash RS, Voss MW, et al. Aerobic fitness is associated with hippocampal volume in elderly humans. Hippocampus. 2009;19(10):1030–9.
Article
PubMed
PubMed Central
Google Scholar
Erickson KI, Weinstein AM, Sutton BP, et al. Beyond vascularization: aerobic fitness is associated with N-acetylaspartate and working memory. Brain Behav. 2012;2(1):32–41.
Article
PubMed
PubMed Central
Google Scholar
Yu F, Kolanowski A. Facilitating aerobic exercise training in older adults with Alzheimer’s disease. Geriatr Nurs. 2009;30(4):250.
Article
PubMed
Google Scholar
Rao AK, Chou A, Bursley B, et al. Systematic review of the effects of exercise on activities of daily living in people with Alzheimer’s disease. The American journal of occupational therapy : official publication of the American occupational. Therapy Assoc. 2014;68(1):50–6. https://doi.org/10.5014/ajot.2014.009035 published Online First: Epub Date.
Article
Google Scholar
Forbes D, Forbes SC, Blake CM, et al. Exercise programs for people with dementia. The Cochrane database of systematic reviews 2015(4):Cd006489. https://doi.org/10.1002/14651858.CD006489pub4.[published Online First: Epub Date].
Zeng Z, Deng YH, Shuai T, et al. Effect of physical activity training on dementia patients: a systematic review with a meta-analysis. Chin Nurs Res. 2016;3(4):168–75.
Article
Google Scholar
Hess N, Dieberg G, Mcfarlane J, et al. The effect of exercise intervention on cognitive performance in persons at risk of, or with dementia: a systematic review and meta-analysis. J Qilu Nurs. 2014;3(3).