Husebo BS, Kunz M, Achterberg WP, Lobbezoo F, Kappesser J, Tudose C, Lautenbacher S. Pain assessment and treatment challenges in patients with dementia. Zeitschrift für Neuropsychologie. 2012;23(4):236–44.
Article
Google Scholar
Miro J, Paredes S, Rull M, Queral R, Miralles R, Nieto R, Huguet A, Huguet J. Pain in older adults: a prevalence study in the mediterranean region of Catalonia. Eur J Pain. 2007;11:83–92.
Article
PubMed
Google Scholar
Kappesser J, Williams ACDC. Pain estimation: asking the right questions. Pain. 2010;148(2):184–7.
Article
PubMed
Google Scholar
Engle VF, Graney MJ, Chan A. Accuracy and bias of licensed practical nurse and nursing assistant ratings of nursing home residents’ pain. J Gerontol A Biol Sci Med Sci. 2001;56(7):M405–11.
Article
CAS
PubMed
Google Scholar
Husebo BS, Kunz M, Achterberg WP, Lobbezoo F, Kappesser J, Tudose C, Lautenbacher S. Pain assessment and treatment challenges in patients with dementia. Zeitschrift für Neuropsychologie. 2012;23(4):237–46.
Article
Google Scholar
Achterberg WP, Pieper MJC, van Dalen-Kok AH, de Waal MWM, Husebo BS, Lautenbacher S, Kunz M, Scherder EJA, Corbett A. Pain management in patients with dementia. Clin Interv Aging. 2013;8:1471–82.
Article
CAS
PubMed
PubMed Central
Google Scholar
Hadjistavropoulos T, Herr K, Prkachin KM, Craig KD, Gibson SJ, Lukas A, Smith JH. Pain assessment in elderly adults with dementia. Lancet Neurol. 2014;13(12):1216–27.
Article
PubMed
Google Scholar
Zwakhalen SM, Hamers JP, Abu-Saad HH, Berger MP. Pain in elderly people with severe dementia: a systematic review of behavioural pain assessment tools. BMC Geriatrics. 2006;6:3.
Article
PubMed
PubMed Central
Google Scholar
Chibnall J, Tait R. Pain assessment in cognitively impaired and unimpaired older adults: a comparison of four scales. Pain. 2001;92:173–86.
Article
CAS
PubMed
Google Scholar
Lukas A, Barber JB, Johnson P, Gibson SJ. Observer‐rated pain assessment instruments improve both the detection of pain and the evaluation of pain intensity in people with dementia. Eur J Pain. 2013;17(10):1558–68.
CAS
PubMed
Google Scholar
Corbett A, Achterberg W, Husebo B, Lobbezoo F, de Vet H, Kunz M, Strand L, Constantinou M, Tudose C, Kappesser J, de Waal M, Lautenbacher S. An international road map to improve pain assessment in people with impaired cognition: the development of the Pain Assessment in Impaired Cognition (PAIC) meta-tool. BMC Neurology. 2014;14:229.
Article
PubMed
PubMed Central
Google Scholar
Sheu E, Versloot J, Nader R, Kerr D, Craig KD. Pain in the elderly: validity of facial expression components of observational measures. Clin J Pain. 2011;27(7):593–601.
Article
PubMed
Google Scholar
Kunz M, Mylius V, Scharmann S, Schepelman K, Lautenbacher S. Influence of dementia on multiple components of pain. Eur J Pain. 2009;13:317–25.
Article
PubMed
Google Scholar
Kunz M, Scharmann S, Hemmeter U, Schepelman K, Lautenbacher S. The facial expression of pain in patients with dementia. Pain. 2007;133:221–8.
Article
PubMed
Google Scholar
P. A. Beach, J. T. Huck, M. M. Miranda, K. T. Foley, and A. C. Bozoki. Effects of Alzheimer’s Disease on the Facial Expression of Pain. The Clinical Journal of Pain, in press.
Kunz M, Lautenbacher S, Leblanc N, Rainville P. Are both the sensory and the affective dimensions of pain encoded in the face? Pain. 2012;153:350–8.
Article
PubMed
Google Scholar
Kunz M. Do observers use the same facial movements that encode pain when inferring pain in others? Eur J Pain. 2015;19(6):743–4.
Article
CAS
PubMed
Google Scholar
Roy C, Blais C, Fiset D, Rainville P, Gosselin F. Efficient information for recognizing pain in facial expressions. Eur J Pain. 2015;19:852–60.
Article
CAS
PubMed
Google Scholar
Nijk RM, Zuidema SU, Koopmans RT. Prevalence and correlates of psychotropic drug use in Dutch nursing-home patients with dementia. Int Psychogeriatr. 2009;21(03):485–93.
Article
PubMed
Google Scholar
Priebe A, Kunz M, Morcinek C, Rieckmann P, Lautenbacher S. Does Parkinson’s disease lead to alterations in the facial expression of pain? J Neurol Sci. 2015;359(1):226–35.
Article
PubMed
Google Scholar
Prkachin KM, Solomon PE, Ross J. Underestimation of pain by health-care providers: towards a model of the process of inferring pain in others. CJNR (Canadian Journal of Nursing Research). 2007;39(2):88–106.
Google Scholar
Lautenbacher S, Niewelt BG, Kunz M. Decoding pain from the facial display of patients with dementia: a comparison of professional and nonprofessional observers. Pain Med. 2013;14(4):469–77.
Article
PubMed
Google Scholar
A. Temitayo. M.S. Olugbade, H. Aung, N. Bianchi-Berthouze, N. Marquardt, and A. C. Williams. Bimodal detection of painful reaching for chronic pain rehabilitation systems. In Proceedings of the 16th International Conference on Multimodal Interaction, ICMI ‘14, pp. 455–458, New York, NY, USA, 2014.
P. Lucey, J.F. Cohn, I. Matthews, S. Lucey, S. Sridharan, J. Howlett, and K.M. Prkachin. Automatically Detecting Pain in Video Through Facial Action Units. Systems. Man and Cybernetics, Part B: Cybernetics, IEEE Transactions on. 2011; vol. 41, no. 3, pp. 664–674
Zhang W, Xia L. Pain expression recognition based on SLPP and MKSVM. Int J Eng Manag Econ (IJEM). 2011;1(3):69.
Google Scholar
Bartlett MS, Littlewort GC, Frank MG, Lee K. Automatic decoding of facial movements reveals deceptive pain expressions. Curr Biol. 2014;24(7):738–43.
Article
CAS
PubMed
PubMed Central
Google Scholar
Littlewort GC, Bartlett MS, Lee K. Automatic coding of facial expressions displayed during posed and genuine pain. Image Vis Comput. 2009;27(12):1797–803.
Article
Google Scholar
Niese R, Al-Hamadi A, Panning A, Brammen D, Ebmeyer U, Michaelis B. Towards pain recognition in post-operative phases using 3d-based features from video and support vector machines. JDCTA. 2009;3:4.
Google Scholar
Hammal Z, Kunz M. Pain monitoring: a dynamic and context-sensitive system. Pattern Recognit. 2012;45(4):1265–80.
Article
Google Scholar
S. Kaltwang,, O. Rudovic, and M.Pantic. Continuous pain intensity estimation from facial expressions. In Advances in Visual Computing. Springer Berlin Heidelberg, pp. 368–377, 2012.
P. Werner, A. Al-Hamadi, and R. Niese. Pain recognition and intensity rating based on comparative learning. In Image Processing (ICIP), 19th IEEE International Conference, pp. 2313–2316, 2012.
Z. Hammal, and J.F. Cohn. Automatic Detection of Pain Intensity. In Proceedings of the 14th ACM International Conference on Multimodal Interaction, ICMI ‘12, New York, NY, USA, pp. 47–52, 2012.
O. Rudovic, V. Pavlovic, and M. Pantic. Automatic pain intensity estimation with heteroscedastic conditional ordinal random fields. In Advances in Visual Computing. Springer Berlin Heidelberg, pp. 234–243, 2013.
A. Ghasemi, X. Wei, P. Lucey, S. Sridharan, and C. Fookes. Social signal processing for pain monitoring using a hidden conditional random field. In Statistical Signal Processing (SSP), 2014 IEEE Workshop, pp. 61–64. IEEE, 2014.
Irani R, Nasrollahi K, Simon MO, Corneanu CA, Escalera S, Bahnsen C, Lundtoft D, Moeslund TB, Pedersen T, Klitgaa ML, Petrini L. Spatiotemporal analysis of RGB-DT facial images for multimodal pain level recognition. United States: EEE Computer Society Press; 2015.
Google Scholar
Herr K, Bjoro K, Decker S. Tools for assessment of pain in nonverbal older adults with dementia: a state-of-the-science review. J Pain Symptom Manage. 2006;31(2):170–92.
Article
PubMed
Google Scholar
Ekman P, Friesen WV. The facial action coding system. Palo Alto: Consulting Psychologists Press; 1978.
Google Scholar
van der Steen JT, Sampson EL, Van den Block L, Lord K, Vankova H, Pautex S, Vandervoort A, Radbruch L, Shvartzman P, Sacchi V, de Vet HCW, Van den Noortgate NJA. Tools to assess pain or lack of comfort in dementia: a content analysis. J Pain Symptom Manag. 2015;50(5):659–75.
Article
Google Scholar
Bartlett MS, Littlewort GC, Frank MG, Lainscsek C, Fasel IR, Movellan JR. Automatic recognition of facial actions in spontaneous expressions. J Multimed. 2006;1(6):22–35.
Article
Google Scholar
Küblbeck C, Ernst A. Face detection and tracking in video sequences using the modified census transformation. Image Vis Comput. 2006;24(6):564–72.
Article
Google Scholar
T. Ruf, A. Ernst, C. Küblbeck. Face Detection with the Sophisticated High-speed Object Recognition Engine (SHORE). In Microelectronic Systems—Circuits, Systems and Applications, Springer, pp. 243–252, 2012
Garbas J-U, Ruf T, Unfried M, Dieckmann A. Towards robust real-time valence recognition from facial expressions for market research applications. Geneva: Proceedings Humaine Association Conference On Affective Computing And Intelligent Interaction (ACII; 2013.
Book
Google Scholar
M. Valstar. Automatic behaviour understanding in medicine. In Proceedings of the 2014 Workshop on Roadmapping the Future of Multimodal Interaction Research including Business Opportunities and Challenges, pp. 57–60, 2014.
Hassan T, Seuss D, Wollenberg J, Garbas J, Schmid U. A Practical Approach to Fuse Shape and Appearance Information in a Gaussian Facial Action Estimation Framework. In Gal A. Kaminka (Ed.), Proceedings of European Conference on Artificial Intelligence (ECAI 2016), vol. 285, pp. 1812–1817, 2016, The Hague, The Netherlands.
Prkachin KM. The consistency of facial expressions of pain: a comparison across modalities. Pain. 1992;51:297–306.
Article
CAS
PubMed
Google Scholar
Kunz M, Lautenbacher S. The faces of pain: a cluster analysis of individual differences in facial activity patterns of pain. Eur J Pain. 2004;18(6):813–23.
Article
Google Scholar
M. Kunz, and S. Lautenbacher, S. Improving recognition of pain by calling attention to its various faces. European Journal of Pain, in press
T. Mitchell. Machine Learning. McGraw Hill, 1997.
M. Siebers, M. Kunz, S. Lautenbacher, and U. Schmid. Classifying Facial Pain Expressions: Individual Classifiers vs. Global Classers. In Dirk Reichardt (Ed.), Proceedings of the 4th Workshop on Emotion and Computing—Current Research and Future Impact, 2009.
Siebers M, Schmid U, Seuß D, Kunz M, Lautenbacher S. Characterizing facial expressions by grammars of action unit sequences - a first investigation using ABL. Inform Sci. 2016;329:866–75.
Article
Google Scholar
Muggleton S, De Raedt L. Inductive logic programming: theory and methods. J Log Program. 1994;19:629–79.
Article
Google Scholar
M. Siebers, T. Engelbrecht, and U. Schmid. On the Relevance of Sequence Information for Decoding Facial Expressions of Pain and Disgust {An Avatar Study. In: D. Reichardt (Hrsg.): Proceedings 7th Workshop Emotion & Computing. Current Research and Future Impact, pp. 3–9, 2013.
Sampson EL, Ritchie CW, Lai R, Raven PW, Blanchard MR. A systematic review of the scientific evidence for the efficacy of a palliative care approach in advanced dementia. Int Psychogeriatr. 2005;17(1):31–40.
Article
CAS
PubMed
Google Scholar
Wu CL, Cohen SR, Richman JM, Rowlingson AJ, Courpas GE, Cheung K, Lin EE, Liu SS. Efficacy of postoperative patient-controlled and continuous infusion epidural analgesia versus intravenous patient-controlled analgesia with opioids: a meta-analysis. Anesthesiology. 2015;103(5):1079–88.
Article
Google Scholar