Skip to main content

Table 1 Study Characteristics

From: Novel sensing technology in fall risk assessment in older adults: a systematic review

Author/Year

Faller Identification Method

Population/Sample Size/Age (Mean ± SD)

Technology

Sensor placement if applicable

Test Protocol

Outcome Measures

Model

Model validation

Accuracy

Specificity

Sensitivity

AUC

Bautmans et al. 2011 [34]

Fall history (> = 1) in past 6- month, or TUG >15 s, or Tinetti <=24

F (n = 40, 80.6 ± 5.4),

NF (n = 41, 79.1 ± 4.9),

YA (n = 40, 21.6 ± 1.9)

A single Tri-axial Accelerometer

Sacrum

Straight line walking

Gait Speed, Step time symmetry, step/stride regularity

Logistic regression.

Only gait speed was effective for discrimination analysis

NA

77

78

78

0.83

Caby et al. 2011 [35]

Fall history (> = 1) in past 1-year, with additional physician screening

F (n = 15, 80.1 ± 5.3),

NF (n = 5, 83.2 ± 4.3)

10 Tri-axial Accelerometer sensor network

Knee, Ankle, Elbow, Wrist, Shoulder

Straight line walking

67 gait acceleration features extracted(temporal, frequency, power, and correlation between sensors)

RBFN SVM, KNN, NB

Leave-one-out cross validation

75-100

40-100

93-100

 

Jansen et al. 2011 [36]

Fall history (> = 1) unknown length, or TUG >15 s, or Tinetti <=24

F (n = 40, 80.6 ± 5.4),

NF (n = 40, 79.0 ± 5.0)

A single Tri-axial Accelerometer

Sacrum

Straight line walking

22 acceleration features 5 groups (step count, step time, step length, step symmetry and step RMS)

NB,MLP,SVM, LWL, Decision Tree, NEAT

Ten-fold cross validation (Max value)

61-82

62-84

58-80

 

Liu et al. 2011 [37]

Fall history (> = 1) in past 1-year

OA (n = 68, 80.1 ± 4.4; MF/NMF = 9/59) MF (> = 2 falls)

A Tri-axial Accelerometer

Waist

TUG,AST,STS5

126 features (temporal, energy, spectral)

Linear multiple regression,

Leave-one-out cross validation

78

90

59

 

Marschollek et al. 2011 [38]

1-year prospective fall occurrence (> = 1)

OA (n = 46, 81.3; F/NF = 19/27)

A Tri-axial Accelerometer

Waist

TUG, Straight line walking

Kinetic Energy,

Pelvis Sway,

Gait variability,

Step time/length, number of steps for TUG, spectral density parameters

Decision tree, logistic regression

Ten-fold cross validation (mean value)

65-80

78-96

42-74

0.65-0.87

Paterson et al. 2011 [40]

1-year prospective fall occurrence (> = 1)

F (n = 54, 69.0 ± 6.9)

NF (n = 43, 68.4 ± 7.3)

Two Tri-axial Accelerometers

Foot mount

7 min walking on a circuit

Stride dynamic (Fractal Scaling Index)

Logistic regression

NA

67

58.1

74.1

 

Weiss et al. 2011 [39]

Fall history, past 1-year (> = 2)

F (n = 23, 76.0 ± 3.9)

NF (n = 18, 68.3 ± 9.1)

A Tri-axial Accelerometer

Lower back

TUG

Duration of TUG and subtasks, acceleration range and Jerk. Number of steps for TUG, gait speed

Logistic regression

NA

63.4-87.8

50.0-83.3

65.2-91.3

 

Yamada et al. 2011 [20]

Fall history (> = 1) in past 1-year

F (n = 16, 84.8 ± 10.1)

NF (n = 29, 80.2 ± 6.4)

Wii Balance Board

NA

Game-based measure in seated/standing

Game score

Discriminate analysis

NA

88.6

   

Greene et al. 2012 [21]

2-year prospective fall occurrence (> = 2)

F (n = 83, 71.8 ± 6.9)

NF (n = 143, 71.4 ± 6.6)

Two Tri-axial Inertial sensors (accelerometer/gyroscope)

Shank

TUG

44 features (spatial/temporal gait parameters, angular velocity parameters, turn parameters)

Discriminate classifier

Ten-fold cross validation (mean value)

73-83

73-96

56-90

0.74-0.85

Greene et al. 2012 [22]

Fall history (> = 2, or one fall requiring medical attention) in past 1-year

F (n = 65, 74.0 ± 5.8)

NF (n = 55, 73.3 ± 5.8)

A Tri-axial Inertial sensor (accelerometer/gyroscope)

Lower back L3

Standing balance (EO/semi- tandem, EC/narrow stance)

RMS of AP/ML acceleration, frequency variability, spectral entropy

SVM

Ten-fold cross validation (mean value)

63-72

58-82

59-67

 

Schwesig et al. 2012 [23]

1 year prospective fall occurrence (> = 1)

OA (n = 141, 82.7; MF/NMF = 17/124, MF (> = 3 falls)

Two Tri-axial Inertial sensors (accelerometer/gyroscope)

Shoe-mounted

Straight line walking

Temporal gait parameters

Logistic regression, ROC curve

NA

 

42-61

63-100

0.66-0.7

Senden et al. 2012 [24]

Tinetti <=24

F (n = 50, 79 ± 6)

NF (n = 50, 74 ± 5)

A Tri-axial Accelerometer

Sacrum

Straight line walking

spatial-temporal gait parameters, step time symmetry, harmonic ratio, inter-stride variability, RMS acceleration

Linear regression, ROC curve

NA

   

0.67-0.85

Doheny et al. 2013 [25]

Fall history, past 1-year (> = 2, or one fall requiring medical attention)

F (n = 19, 74.9 ± 7.0)

NF (n = 20, 68.4 ± 6.2)

Two Tri-axial Inertial sensors (accelerometer/gyroscope)

Sternum, Thigh

STS5

Total Time, Sub-phase time, Spectral Edge Frequency, postural sway (RMS acceleration),

Logistic regression

Leave-one-out cross validation

74.4

80

68.7

0.70

Doi et al. 2013 [26]

1 year prospective fall occurrence (> = 1)

F (n = 16, 84.8 ± 5.9)

NF (n = 57, 79.7 ± 8.2)

Two Tri-axial Accelerometer

Upper/lower trunk

Straight line walking

Harmonic Ratio

Logistic regression, ROC curve

NA

 

84.2

68.8

0.81

Riva et al. 2013 [28]

Fall history (> = 1) in past 1-year

F (n = 44, 63.3 ± 6.4)

NF (n = 90, 62.0 ± 6.1)

Tri-axial Accelerometer

Lower back

Treadmill walking

Harmonic Ratio, Index of harmonicity, Multiscale Entropy, Recurrence quantification analysis parameters

Logistic regression

NA

71-72.5

96.6

16.7-21.4

 

Nishiguchi et al. 2013 [27]

Fall history (> = 1) in past 1-year

F (n = 41, 75.4 ± 4.6)

NF (n = 111, 73.5 ± 4.6)

Laser Range Finder

NA

Choice Stepping Test

Step reaction time, error rate, stepping –response score

Logistic regression, ROC curve

NA

 

69.7

73.0

0.73

Colagiorgio et al. 2014 [29]

Combination of (Tinetti + BBS + BESTest) < 29 / 33

OA (n = 66, 76 ± 10, F/NF = 22/44)

YA (n = 13, 26 ± 5)

Microsoft Kinect

NA

Standing balance(EO,EC, Nudged on firm surface or foam surface), Reaching forward, Stand-to -Sit, Sit-to- Stand, AST

80 features (COM postural sway, Chest Pitch Angle, velocity of transition, velocity of stepping)

Majority Classifier,

Decision Tree, SVM,KNN, NB

.632 bootstrap technique

47.9-84.3

47.8-91.3

47.7-83.1

 

Simila et al. 2014 [31]

BBS < =49

OA (n = 20, 76.8 ± 5.6)

YA (n = 19, 27.5 ± 4.4)

NP (n = 15, 55.2 ± 7.3)

Tri-axial Accelerometer

Lower back

BBS, straight line walking

Resultant acceleration in each task, gait pattern as measured by averaged acceleration in each step

KNN, ROC curve

NA

60.8-87.2

62-96.6

42.1-89.5

0.66-0.89

Kargar et al. 2014 [30]

Physician examination

OA (n = 12, 65 -90; F/NF = 7/5)

Microsoft Kinect

NA

TUG

Number of steps of TUG, step time, turn duration

SVM

Leave-one-out cross validation

67.4

67.5

67.3

 

Kwok et al. 2015 [32]

1 year prospective fall occurrence (> = 1)

F (n = 18, 70.7 ± 5.2)

NF (n = 55, 69.7 ± 7.8)

Wii balance board

NA

Standing balance (EO)

Mean sway velocity

Logistic regression, ROC curve

NA

   

0.67-0.71

Howcroft et al. 2016 [10]

Fall history (> = 1) in past 6-month

F (n = 24, 76.3 ± 7.0)

NF (n = 76, 75.2 ± 6.6)

Pressure sensing insole, Tri-axial Accelerometers

Head, Pelvis, Shank, Shoe

Single/Dual task straight line walking

COP path parameters, temporal gait parameters, Harmonic Ratio, Maximum Lyapunov exponent(local dynamic stability)

MLP, NB, SVM

Hold out method (75% training set, 25% test set)

72-84

73.7-100

33.3-100

 

Howcroft et al. 2017 [33]

6- month prospective fall occurrence (> = 1)

F (n = 28, 75.0 ± 8.2)

NF (n = 47, 75.3 ± 5.5)

Pressure sensing insole, Tri-axial Accelerometers

Head, Pelvis, Shank, Shoe

Single/Dual task straight line walking

COP path parameters, temporal gait parameters, Harmonic Ratio, Maximum Lyapunov exponent(local dynamic stability)

MLP, NB, SVM

Hold out method (75% training set, 25% test set)

49.2-56.5

52.7-66.6

27.0-46.3

 
  1. OA Older Adult, YA Young Adult, NP Neurological Patient, F Faller, NF Non-Faller, MF Multiple Faller; NMF Non-Multiple Faller