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Abstract
Background  Appendicular lean mass (ALM) is a good predictive biomarker for sarcopenia. And previous studies have 
reported the association between ALM and stroke or Alzheimer’s disease (AD), however, the causal relationship is still 
unclear, The purpose of this study was to evaluate whether genetically predicted ALM is causally associated with the 
risk of stroke and AD by performing Mendelian randomization (MR) analyses.

Methods  A two-sample MR study was designed. Genetic variants associated with the ALM were obtained from a 
large genome-wide association study (GWAS) and utilized as instrumental variables (IVs). Summary-level data for 
stroke and AD were generated from the corresponding GWASs. We used random-effect inverse-variance weighted 
(IVW) as the main method for estimating causal effects, complemented by several sensitivity analyses, including 
the weighted median, MR-Egger, and MR-pleiotropy residual sum and outlier (MR-PRESSO) methods. Multivariable 
analysis was further conducted to adjust for confounding factors, including body mass index (BMI), type 2 diabetes 
mellitus (T2DM), low density lipoprotein-C (LDL-C), and atrial fibrillation (AF).

Results  The present MR study indicated significant inverse associations of genetically predicted ALM with any 
ischemic stroke ([AIS], odds ratio [OR], 0.93; 95% confidence interval [CI], 0.89–0.97; P = 0.002) and AD (OR, 090; 95% CI 
0.85–0.96; P = 0.001). Regarding the subtypes of AIS, genetically predicted ALM was related to the risk of large artery 
stroke ([LAS], OR, 0.86; 95% CI 0.77–0.95; P = 0.005) and small vessel stroke ([SVS], OR, 0.80; 95% CI 0.73–0.89; P < 0.001). 
Regarding multivariable MR analysis, ALM retained the stable effect on AIS when adjusting for BMI, LDL-C, and AF, 
while a suggestive association was observed after adjusting for T2DM. And the estimated effect of ALM on LAS was 
significant after adjustment for BMI and AF, while a suggestive association was found after adjusting for T2DM and 
LDL-C. Besides, the estimated effects of ALM were still significant on SVS and AD after adjustment for BMI, T2DM, LDL-
C, and AF.
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Introduction
Sarcopenia, which is characterized by loss of skeletal 
muscle mass and strength, is a geriatric syndrome and 
has been reported to be related to increased risk of many 
adverse outcomes, including physical disability, poor 
quality of life and even death [1, 2]. And it is of great 
value to investigate the potential linkage between sarco-
penia and aging-related diseases, which will contribute to 
the early diagnosis and timely interventions.

Stroke is now becoming a leading cause of mortal-
ity and disability, especially in low- and middle-income 
countries [3]. It has have revealed that prestroke sarco-
penia can affect stroke severity in elderly patients [4]. In 
addition, prestroke sarcopenia was an independent pre-
dictor for poorer functional outcome at 3 months after 
acute stroke [5].

As for another aging-related disease, Alzheimer’s 
disease (AD) is the most prevalent neurodegenerative 
disease and the major cause of dementia. The close rela-
tionship between sarcopenia and cognitive impairment 
has been observed [6, 7]. And the prevalence of cognitive 
impairment was 40% in patients with sarcopenia [6].

However, the causal effects of sarcopenia on stroke 
and AD still remain unclear, as it will be very challeng-
ing based on the inherent risk of bias due to confounding 
or reverse causality in the observational studies. Appen-
dicular lean mass (ALM) is the sum of lean mass for both 
arms and legs and can be regarded as a major index to 
define sarcopenia [8]. Recently, a genome-wide associa-
tion study (GWAS) identified ALM-associated single-
nucleotide polymorphisms (SNPs) [9], which provided 
an opportunity to explore the causal associations of ALM 
with the risk of stroke and AD by performing Mendelian 
randomization (MR) analyses.

MR is a powerful approach for evaluating the causal 
links between clinical exposures and outcomes [10]. 
Genetic variants associated with the exposures are 
employed as instrumental variables (IVs) [10]. Since 
alleles are randomly assigned to the offspring and can 
remain constant after conception, the MR approach 
can avoid some limitations of conventional observa-
tional studies and reduce the influence of unmeasured 
confounding and reverse causality. Hence, in the pres-
ent study, we aimed to use the two-sample MR analysis 
to elucidate the causal relationships between genetically 
predicted ALM and the risk of stroke subtypes (including 
large artery stroke [LAS], small vessel stroke [SVS], and 
cardioembolic stroke [CES]) as well as AD.

Methods
Study design
A two-sample MR was performed to evaluate the causal 
effects of ALM on the risk of stroke and AD (Fig.  1). 
The present MR study is based on three predominant 
assumptions [11]. First, selected SNPs are associated 
with ALM; second, SNPs are not associated with other 
confounders; third, SNPs affect the risk of stroke and AD 
only through ALM, but not other pathways.

Ethics approval
All analyses of this study were based on the publicly 
available data, and ethical approval had been obtained in 
the original studies.

Selection of IVs for ALM
We used a GWAS of ALM to identify independent SNPs 
which were significantly associated with ALM from the 
UK Biobank with 450,243 European ancestry participants 
(Table  1) [9]. In this GWAS, ALM was measured using 
bioelectrical impedance analysis (BIA) for the sum of fat-
free mass at the arms and legs [9]. The total 1059 SNPs 
associated with ALM (P < 5.0 × 10− 9) were obtained for 
the analyses, which explained 15.5% of the phenotypic 
variance. The F statistic was used to evaluate the weak 
instrument bias of each SNP using the formula equa-
tion: F = R2 × (N − 2) / (1 − R2), where R2 shows the pro-
portion of variance of ALM and N represents the sample 
size [12]. R2 of each SNP was calculated by using the for-
mula R2 = 2 × effect allele frequency × (1 − effect allele fre-
quency) ×Beta2. F statistic > 10 indicated that the selected 
SNP can be recommended as an indication of strong IV. 
These ALM-associated SNPs were further tested whether 
there was a linkage disequilibrium. Finally, 810 of these 
SNPs passed the selection criteria and were included for 
further MR analysis (r2 < 0.1; region size, 3000 kb). Proxy 
SNPs in linkage disequilibrium (r2 > 0.8) were searched 
online (http://snipa.helmholtz-muenchen.de/snipa3/) 
and used if the ALM-associated SNPs were not available 
in the datasets of stroke or AD (Supplementary Table 1).

Outcomes data sources
Summary statistics for the association between the ALM-
related genetic variants and stroke were extracted from 
the MEGASTROKE consortium, which included 34,217 
ischemic stroke cases and 406, 111 controls with Euro-
pean ancestry (Table 1) [13]. In this GWAS study, 34,217 
ischemic cases were further classified as LAS (n = 4373), 

Conclusions  The two-sample MR analysis indicated that genetically predicted ALM was negatively related to AIS and 
AD. And the subgroup analysis of AIS revealed a negative causal effect of genetically predicted ALM on LAS or SVS. 
Future studies are required to further investigate the underlying mechanisms.
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SVS (n = 5386), and CES (n = 7193) according to the Trial 
of ORG 10,172 in Acute Stroke Treatment (TOAST) cri-
teria [13]. Genetic variants were measured and imputed 
in dosage format using an additive genetic model with a 
minimum of sex and age as covariates [13].

Summary statistics for the association between the 
ALM-related genetic variants and AD were obtained 
from a GWAS meta-analysis of International Genomics 
of Alzheimer’s Project (IGAP) stage 1 discovery study 
with 21,982 cases and 41,944 cognitively normal con-
trols with European ancestry (Table 1) [14]. And all these 

stage 1 samples were from the following four consortia: 
Alzheimer Disease Genetics Consortium (ADGC; con-
sisting of 14,428 cases and 14,562 controls), Cohorts for 
Heart and Aging Research in Genomic Epidemiology 
(CHARGE; consisting of 2137 cases and 13,474 controls) 
consortium, The European Alzheimer’s Disease Initia-
tive (EADI; consisting of 2240 cases and 6631 controls), 
and Genetic and Environmental Risk in AD/Defining 
Genetic, Polygenic and Environmental Risk for Alzheim-
er’s Disease Consortium (GERAD/PERADES; consisting 

Table 1  Details of data sources involved in the present MR study
Phenotype Consortium Ancestry Sample size Cases Use in this MR
ALM UKB[1] European 450,243 / Exposure
AIS MEGASTROKE[2] European 440,328 34,217 Outcome
LAS 410,484 4,373 Outcome
SVS 411,497 5,386 Outcome
CES 413,304 7,193 Outcome
AD IGAP[3] European 63,926 21,982 Outcome
BMI GERA, GIANT[4] 94.1% European 458,721 / Confounder
T2DM DIAGRAM, GERA, UKB[5] 99.4% European 659,316 62,892 Confounder
LDL-C GERA[6] 80.9% European 94,674 / Confounder
AF AFHRC[7] 84.2% European 588,190 65,446 Confounder
ALM, appendicular lean mass; AIS, any ischemic stroke; LAS, large artery stroke; SVS, small vessel stroke; CES, cardioembolic stroke; AD, Alzheimer’s disease; BMI, body 
mass index; T2DM, type 2 diabetes mellitus; LDL-C, low density lipoprotein-C; AF, atrial fibrillation; UKB, UK Biobank; IGAP, International Genomics of Alzheimer’s 
Project; GERA, Genetic Epidemiology Research on Aging; GIANT, Genetic Investigation of ANthropometric Traits; DIAGRAM, DIAbetes Genetics Replication and 
Meta-analysis; AFHRC, Atrial Fibrillation Haplotype Reference Consortium
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Fig. 1  Schematic representation of Mendelian randomization analysis. SNP, single-nucleotide polymorphism; ALM, appendicular lean mass; AD, Al-
zheimer’s disease

 

https://doi.org/10.1038/s42003-020-01334-0
https://doi.org/10.1038/s41588-018-0058-3
https://doi.org/10.1038/s41588-019-0358-2
https://doi.org/10.1534/genetics.118.301479
https://doi.org/10.1038/s41467-018-04951-w
https://doi.org/10.1038/s41588-018-0064-5
https://doi.org/10.1038/s41588-018-0133-9


Page 4 of 9Zhu et al. BMC Geriatrics          (2024) 24:438 

of 3177 cases and 7277 controls). Age, sex, and principal 
components were used as covariates in the analysis [14].

Statistical analysis
We conducted the two-sample MR analyses to assess the 
causal associations of ALM with the risk of stroke and 
AD. In the main analyses, we used the random effects 
inverse-variance weighted (IVW) approach to estimate 
the causal effects. Besides, sensitivity analyses were per-
formed to assess the robustness of the IVW results by 
using the weighted median, MR-Egger, and MR-pleiot-
ropy residual sum and outlier (MR-PRESSO) methods. 
The weighted median method can provide valid esti-
mates as long as at least 50% of the information in the 
analysis comes from valid IVs [15]. MR-Egger method 
was conducted to assess and adjust for the bias due to 
directional pleiotropy [16]. The MR-PRESSO method 
was used to detect outlying SNPs which are potentially 
horizontally pleiotropic and assess whether exclusion of 
these outlying SNPs influences the causal estimates [17]. 
Cochran’s Q statistic was utilized to assess the heteroge-
neity among SNPs. Heterogeneity was considered to exist 
if the P value of Cochran’s Q statistic was less than 0.05, 
and then random effects IVW approaches were used. The 
web-based application was used to calculate the statisti-
cal power (http://cnsgenomics.com/shiny/mRnd/).

Besides, multivariable MR analysis was conducted for 
the purpose of adjustment for confounders [18]. The fol-
lowing four covariates were taken into account in the 
multivariable analysis, including body mass index (BMI), 
type 2 diabetes mellitus (T2DM), low density lipopro-
tein-C (LDL-C), and atrial fibrillation (AF). We used pub-
licly available summary statistics for BMI from Hoffmann 
et al. [19], T2DM from Xue et al. [20], LDL-C from Hoff-
mann et al. [21], and AF from the Haplotype Reference 
Consortium (Table 1) [22]. The Bonferroni-corrected sig-
nificance threshold was set to P < 0.01 (corrected P value 
0.05 / 5 outcomes). And a P value between 0.01 and 0.05 
was defined as a suggestive association between expo-
sure and outcome. All analyses were conducted using the 
TwoSampleMR [23], MendelianRandomization [24], and 
MR-PRESSO packages [17] in R software (Version 4.1.3).

Results
Influence of genetically predicted ALM on the risk of stroke
There was moderate heterogeneity (P for Cochran’s 
Q < 0.05) in the estimated effects of ALM on stroke and 
AD, but without pleiotropies (P for intercept > 0.05) (Sup-
plementary Table 2). Therefore, the multiplicative ran-
dom effects IVW method was applied for more reliable 
estimates.

The overall IVW MR analyses revealed a negative rela-
tionship between genetically predicted ALM and the risk 
of any ischemic stroke ([AIS], odds ratio [OR], 0.93; 95% 

confidence interval [CI], 0.89–0.97; P = 0.002; Fig. 2). Sub-
group analysis of AIS showed that genetically predicted 
ALM was associated with the risk of LAS(OR, 0.86; 95% 
CI 0.77–0.95; P = 0.005) and SVS (OR, 0.80; 95% CI 0.73–
0.89; P < 0.001).

As for sensitivity analyses, we found a significant causal 
association between ALM and the risk of AIS using MR-
PRESSO method after excluding four potential outliers 
(P = 0.007; Fig.  2). The suggestive causal association was 
observed between genetically predicted ALM and LAS 
using MR-PRESSO method after excluding two potential 
outliers (P = 0.010). Besides, genetically predicted ALM 
was suggestively associated with the risk of SVS using 
weighted median and MR-Egger methods (both P < 0.05), 
while the causal significant relationship was found using 
MR-PRESSO method after excluding three potential out-
liers (P < 0.001).

Influence of genetically predicted ALM on the risk of AD
The overall IVW MR analyses indicated a causal effect of 
genetically predicted ALM on the risk of AD (OR, 0.90; 
95% CI 0.85–0.96; P = 0.001; Fig. 2).

In the sensitivity analysis, the significant causal asso-
ciation was found between genetically predicted ALM 
and AD using MR-PRESSO method after excluding one 
potential outliers (P < 0.001), while genetically predicted 
ALM was suggestively associated with the risk of AD 
using weighted median method (P = 0.047).

Multivariable MR analysis
To further investigate the causal associations of geneti-
cally predicted ALM with the risk of stroke and AD, mul-
tivariable MR analyses were performed including BMI, 
T2DM, LDL-C, and AF.

The multivariable MR analysis revealed that genetically 
predicted ALM retained the stable effect on AIS when 
adjusting for BMI (OR, 0.93; 95% CI 0.89–0.97; P = 0.002; 
Fig.  3), LDL-C (OR, 0.93; 95% CI 0.89–0.98; P = 0.004), 
and AF (OR, 0.84; 95% CI 0.80–0.89; P < 0.001), while a 
suggestive association was observed after adjusting for 
T2DM (OR, 0.94; 95% CI 0.89-1.00; P = 0.046). Regard-
ing LAS, the estimated effect of ALM was significant 
after adjustment for BMI (OR, 0.86; 95% CI 0.77–0.96; 
P = 0.006) and AF (OR, 0.76; 95% CI 0.67–0.86; P < 0.001), 
while a suggestive association was found after adjustment 
for T2DM (OR, 0.87; 95% CI 0.76–0.99; P = 0.033) and 
LDL-C (OR, 0.88; 95% CI 0.79–0.98; P = 0.020). The esti-
mated effects of ALM on SVS and AD were unchanged 
after adjustment for BMI (OR, 0.80; 95% CI 0.73–0.89; 
P < 0.001 for SVS; OR, 0.90; 95% CI 0.85–0.96; P = 0.001 
for AD ), T2DM (OR, 0.85; 95% CI 0.76–0.96; P = 0.006 
for SVS; OR, 0.91; 95% CI 0.85–0.98; P = 0.009 for AD), 
LDL-C (OR, 0.82; 95% CI 0.74–0.91; P < 0.001 for SVS; 
OR, 0.90; 95% CI 0.85–0.96; P = 0.002 for AD), and AF 

http://cnsgenomics.com/shiny/mRnd/
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Fig. 2  Causal effect estimates of genetically predicted ALM on stroke and AD. *MR-PRESSO outlier detected: rs4858605, rs42039, rs3184504, rs118127175 
(for AIS); rs3184504, rs732716 (for LAS); rs72938315, rs10824747, rs3184504 (for SVS); rs295139, rs7633464, rs10993370 (for CES); rs4663096 (for AD). AIS, 
any ischemic stroke; LAS, large artery stroke; SVS, small vessel stroke; CES, cardioembolic stroke; AD, Alzheimer’s disease; SNP, single nucleotide polymor-
phism; OR, odds ratio; CI, confidence interval
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Fig. 3  Multivariable Mendelian randomization analysis of the causal associations of genetically predicted ALM with the risk of stroke and AD. AIS, any 
ischemic stroke; LAS, large artery stroke; SVS, small vessel stroke; CES, cardioembolic stroke; AD, Alzheimer’s disease; IVW, inverse-variance weighted; BMI, 
body mass index; T2DM, type 2 diabetes mellitus; LDL-C, low density lipoprotein-C; AF,  atrial fibrillation; OR, odds ratio; CI, confidence interval
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(OR, 0.77; 95% CI 0.69–0.87; P < 0.001 for SVS; OR, 0.90; 
95% CI 0.84–0.97; P = 0.005 for AD). Intriguingly, the 
association between ALM and CES was directionally 
inconsistent with the IVW MR analysis after adjustment 
for AF, which revealed a suggestive negative relationship 
(OR, 0.91; 95% CI 0.83–0.99; P = 0.034).

Discussion
In the present study, we conducted a two-sample MR 
study to investigate whether genetically predicted ALM 
was causally associated with the risk of stroke and AD. 
Our findings showed the significant negative relation-
ship between genetically predicted ALM and the risk of 
AIS, LAS, SVS, and AD. Multivariable MR analysis sug-
gested that ALM retained the stable effect on AIS when 
adjusting for BMI, LDL-C, and AF, while a suggestive 
association was observed after adjusting for T2DM. And 
the estimated effect of ALM on LAS was significant after 
adjustment for BMI and AF, while a suggestive asso-
ciation was found after adjusting for T2DM and LDL-C. 
Besides, the estimated effects of ALM were still signifi-
cant on SVS and AD after adjustment for BMI, T2DM, 
LDL-C, and AF.

ALM is mainly determined by skeletal muscle and has 
a good predictive power for sarcopenia, which is mainly 
due to the progressive loss of skeletal muscle mass and 
strength [2, 9]. In addition, ALM is highly heritable and 
can be a suitable trait for sarcopenia-related genetic anal-
yses [25].

Ischemic stroke is one of the leading causes of mortality 
and long-term disability worldwide. It has been reported 
that sarcopenia was related to elevated prevalence of 
stroke in South korean men aged ≥ 50 years [26]. Besides, 
increased skeletal muscle mass may contribute to protect 
against silent infarction [27]. However, the relationship 
between genetically predicted ALM and stroke has not 
been explored yet. In this MR study, we found significant 
negative associations between ALM and the risk of AIS, 
LAS, and SVS. It may be attributed to chronic low-grade 
inflammation, which can promote the loss of muscle 
mass, strength, and function on account of the influences 
on both muscle protein breakdown and synthesis [28]. 
What’s more, inflammation can mediate aberrant plate-
let aggregation, which can stick to the surface of endo-
thelial cells and induce local ischemia and hypoxia, even 
resulting in tissue death. Thus, individuals with signs of 
inflammation or corresponding biomarkers are consid-
ered to have an elevated risk of stroke [29]. In addition, 
it has been reported that there is an inverse association 
between peripheral lean mass and endothelial dysfunc-
tion, suggesting that low ALM may play an important 
role in the decline of endothelial function [30]. As we 
know, endothelial cells play an important role in main-
taining vascular homeostasis. And vascular endothelial 

dysfunction is critically related to the development of 
cardiovascular diseases, including stroke. Therefore, 
chronic inflammation and vascular endothelial dysfunc-
tion are possible factors associating ALM and stroke.

And our present MR study showed a significant causal 
association between genetically predicted ALM and 
the risk of AD. As we know, it has been reported that 
there was an inverse relationship between lean mass 
and AD incidence [31, 32]. And this relationship may be 
explained by several mechanisms. Chronic inflamma-
tion and oxidative stress have been proven to mediate 
low lean mass and AD in the elderly [33]. Besides, low 
muscle mass but not muscle strength, has been found to 
be independently related to parietal gray matter volume 
atrophy in middle-aged adults [34]. And the parietal lobe 
is involved in the early stage of AD [35], suggesting that 
parietal lobe involvement might lead to cognitive impair-
ment in individuals with low muscle mass. Finally, serum 
brain-derived neurotrophic factor (BDNF) had a positive 
correlation with muscle mass [36]. And the decreased 
level of BDNF can lead to cognitive deterioration, while 
greater levels of BDNF by exercise training can increase 
hippocampal volume and improve cognitive function 
[37].

Therefore, this study provided reliable causal evidence 
for the protective effects of ALM on the risk of stroke and 
AD. Recently, a randomized controlled trial has explored 
a plausible multicomponent intervention based on physi-
cal activity with technological support and nutritional 
counselling for sarcopenia [38]. Our findings inform 
the development of physical interventions targeting low 
ALM to reduce the risk of stroke and AD.

There are several strengths in this study. One strength 
of this study is the MR design. We used the MR method 
to investigate the causal association of genetically pre-
dicted ALM with the risk of stroke and AD based on 
ALM-related SNPs and effects of SNPs on the outcomes 
from GWASs, which can reduce bias induced by residual 
confounding and reverse causality. Second, sensitivity 
analyses were applied to evaluate the robustness of our 
study. Third, some potential confounding factors were 
further analyzed by multivariable MR methods, including 
BMI, T2DM, LDL-C, and AF.

However, several limitations in this study should be 
considered. First, this study utilized ALM data from 
the UK Biobank (UKB), which was measured using BIA 
rather than DXA. As we know, BIA is an indirect mea-
surement method to measure muscle mass and may be 
less accurate than DXA, which could affect the results. 
Second, pleiotropy, especially the horizontal pleiotropy, 
is generally inevitable in MR analysis which would be 
likely to affect the reliability of our results, despite the 
lack of evidence from MR-Egger and MR-PRESSO meth-
ods. Besides, multivariable MR analyses were further 
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applied by adjusting for some confounders. However, the 
pleiotropy could not be fully ruled out in the MR analy-
sis. Third, the GWAS data was mainly derived from Euro-
pean, and caution should be exercised when generalizing 
our findings to different populations, particularly those of 
non-European ancestry. Fourth, we used summary statis-
tics in this study and had no access to the patient-level 
data. Given the different incidences of low ALM, stroke, 
and AD by age and sex, we believe that investigating the 
casual associations of ALM with the risk of stroke and 
AD based on different ages and sexes would be of value.

Conclusions
In conclusion, our two-sample MR analysis provided 
genetic support for the negative causal effects of geneti-
cally predicted ALM on the risk of AIS, LAS, SVS, and 
AD. Future studies are required to further confirm our 
findings and investigate the underlying mechanisms.
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