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Abstract 

Background:  Frailty is a clinical syndrome described as reduced physiological reserve and increased vulnerability. 
Typically examined in older adults, recent work shows frailty occurs in middle-aged individuals and is associated with 
increased mortality. Previous investigation of global transcriptome changes in a middle-aged cohort from the Healthy 
Aging in Neighborhoods of Diversity across the Life Span (HANDLS) study demonstrated inflammatory genes and 
pathways were significantly altered by frailty status and race. Transcriptome differences in frailty by sex remain unclear. 
We sought to discover novel genes and pathways associated with sex and frailty in a diverse middle-aged cohort 
using RNA-Sequencing.

Methods:  Differential gene expression and pathway analyses were performed in peripheral blood mononuclear cells 
for 1) frail females (FRAF, n = 4) vs non-frail females (NORF, n = 4), 2) frail males (FRAM, n = 4) vs non-frail males (NORM, 
n = 4), 3) FRAM vs FRAF, and 4) NORM vs NORF. We evaluated exclusive significant genes and pathways, as well as 
overlaps, between the comparison groups.

Results:  Over 80% of the significant genes exclusive to FRAF vs NORF, FRAM vs NORM, and FRAM vs FRAF, respec-
tively, were novel and associated with various biological functions. Pathways exclusive to FRAF vs NORF were associ-
ated with reduced inflammation, while FRAM vs NORM exclusive pathways were related to aberrant musculoskeletal 
physiology. Pathways exclusive to FRAM vs FRAF were associated with reduced cell cycle regulation and activated 
catabolism and Coronavirus pathogenesis.

Conclusions:  Our results indicate sex-specific transcriptional changes occur in middle-aged frailty, enhancing knowl-
edge on frailty progression and potential therapeutic targets to prevent frailty.
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Background
Frailty is a syndrome described as reduced physiologi-
cal reserve and increased vulnerability to stressors [1]. 
Individuals with frailty have reduced strength and endur-
ance, and increased risk of falls, institutionalization, 
hospitalization, disability, and premature mortality [1]. 

Frailty prevalence in adults ≥ 65  years old in the United 
States is estimated at 15% [2]. Health disparities have 
been observed in frailty; individuals from lower socio-
economic groups, racial and ethnic minority groups, and 
women have significantly higher frailty prevalence [2].

Research in frailty has predominantly studied older 
adult populations (≥ 65  years old). The few studies 
that have evaluated frailty prevalence in middle-aged 
cohorts (35–64  years old) found frailty prevalence 
ranges from 2–8.5% [3–6]. One of these studies found 
mortality was associated with frailty for all age groups 
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(37–73  years old) except for women aged 37–45  years 
old [4]. We also recently evaluated frailty prevalence 
in the Healthy Aging in Neighborhoods of Diversity 
across the Life Span (HANDLS) cohort for middle-aged 
participants 35–64 years old and found 11% were frail 
[7]. Additionally, these middle-aged frail individuals 
had significantly reduced survival probability compared 
to their non-frail counterparts [7], suggesting frailty 
in middle age is associated with mortality. Therefore, 
these studies indicate frailty can occur in middle  age 
and highlight the importance of investigating mecha-
nisms driving frailty in middle-aged individuals.

Few studies have examined molecular mechanisms 
contributing to frailty pathophysiology in midlife. 
Using a Mendelian randomization approach, one study 
found individuals with reductions in low-density lipo-
protein cholesterol had reduced frailty in midlife and 
older age [8]. Another study in African American (AA) 
adults aged 49–65  years old found serum proganulin 
levels were positively correlated with frailty and asso-
ciated with a higher frailty score 9  years later [9]. We 
previously identified differentially expressed genes in 
a middle-aged frail cohort (45–49  years old) by over-
all frailty status and by race [10]. We discovered racial 
differences in gene expression were related to aberrant 
immune and inflammatory processes [10].

Few have examined molecular differences between 
middle-aged men and women, in which substantial 
evidence has demonstrated sex differences in the bur-
den of frailty and frailty-associated mortality [1, 2, 11]. 
Women have greater frailty burden but have greater 
longevity compared to men [11]. Various biological 
factors have been suggested to contribute to sex differ-
ences in frailty, including inflammation, hormones, and 
genetics [11]. For example, estrogen has been linked to 
higher risk of autoimmunity in women, while testoster-
one has been implicated in decreasing immunological 
robustness in men [11]. It has also been suggested that 
women have greater physiological reserve than men 
[11]. How these processes are dysregulated in middle-
aged frail men and women remain unknown.

Examining sex-specific molecular profiles in a mid-
dle-aged frail cohort could reveal novel insight into the 
sex-frailty paradox. Thus, we extended our previous 
study [10] and investigated transcriptome-wide changes 
in a middle-aged frail cohort by sex. RNA-Sequencing 
was utilized to identify global gene expression changes 
in middle-aged frail and non-frail men and women. 
Our pathway analyses revealed sex-specific dysregula-
tion of key frailty-associated biological processes such 
as inflammation, musculoskeletal physiology, cell cycle, 
and metabolism.

Methods
Cohort description
Participants are part of the HANDLS study which has 
been described elsewhere [12]. HANDLS is an epide-
miologic, longitudinal study examining how age-related 
health disparities are influenced by race, socioeconomic 
status, and other behavioral, psychosocial, and environ-
mental conditions [12]. The HANDLS cohort is com-
prised of community-dwelling, non-institutionalized 
African American (AAs) and White adults between the 
ages of 30–64 at enrollment (2004–2009) who resided in 
Baltimore, Maryland [12].

A subcohort was selected for RNA-Sequencing as 
previously described in [10]. Briefly, 16 HANDLS par-
ticipants (8 non-frail, 8 frail) were selected for RNA-
Sequencing, stratified by frailty status, race (50% white, 
50% AAs), and sex [10] (Table 1). Ages of the 16 partici-
pants ranged from 45–49  years old [10] (Table  1). The 
International Academy on Nutrition and Aging FRAIL 
scale (fatigue, resistance, ambulation, illnesses, and loss 
of weight) [13] was used to classify frail individuals, with 
modifications for the loss of weight domain, as previ-
ously described [7, 10]. Loss of weight was measured by 
responses to the following question from item two of 
the Center for Epidemiologic Studies Depression scale: 
“Over the past week did you not feel like eating or have a 
poor appetite?” [14]. Weight loss was categorized as “pre-
sent” if participants responded “occasionally (3–4 days a 
week)” or “mostly (5–7  days a week)” [7]. Frailty scores 
were based on a composite score ranging from 0–5, 
where “0” represents non-frail, “1–2” represents pre-frail, 
and “3–5” represents frail status [7].

Next generation sequencing and bioinformatic analyses
Total RNA was isolated from peripheral blood mono-
nuclear cells and library preparation, sequencing, and 
quality control were performed as previously described 
[10]. The bioinformatics pipeline is briefly outlined in 
Additional file 1. Raw FASTQ reads were trimmed using 
Trimmomatic version 0.39 to remove sequencing adapt-
ers and low-quality bases [15]. FastQC version 0.11.9 was 
used to evaluate additional quality control metrics for the 

Table 1  RNA-Sequencing participant demographics

SD standard deviation

Women Men

N 8 8

Frail or pre-frail, N (%) 4 (50%) 4 (50%)

Age (mean ± SD) 47.85 ± 1.62 48.09 ± 1.50

African American, N (%) 4 (50%) 4 (50%)
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trimmed FASTQ reads [16]. The trimmed FASTQ reads 
were aligned to the Ensembl human reference genome 
version 84 (GRCh38.p5) using HISAT2 version 2.2.1.0 
[17]. The “–rna-strandness” option in HISAT2 was set to 
reverse strand. The resulting HISAT2 aligned SAM files 
were converted to sorted BAM files using samtools ver-
sion 1.11 [18]. The sorted, aligned BAM files were used to 
create a gene counts table using featureCounts from the 
subread module version 2.0.1 [19]. Briefly, the Ensembl 
human gene annotation version 84 was used as the ref-
erence gene annotation, and the strand-specific option 
was set to reverse strand. Gene counts for each respective 
comparison group (see below) were subsetted from the 
original gene counts table into individual sub-tables for 
downstream analyses. DESeq2 version 1.30.0 was used 
to calculate differential gene expression [20]. Genes with 
a row sum count less than 10 were removed from each 
gene counts table prior to analyses. Pairwise comparisons 
were made between the following groups: 1) frail females 
(FRAF, n = 4) vs non-frail females (NORF, n = 4), 2) frail 
males (FRAM, n = 4) vs non-frail males (NORM, n = 4), 
3) FRAM (n = 4) vs FRAF (n = 4), and 4) NORM (n = 4) 
vs NORF (n = 4) as a control. Significant genes were 
defined as having a fold change absolute value of ≥ 1.5, 
and a false discovery rate (FDR) adjusted p-value < 0.05.

Parametric Analysis of Gene Set Enrichment (PAGE) 
[21] and Ingenuity Pathway Analysis (IPA) were used 
to identify significant gene ontology (GO) terms. 
Standard Z-scores calculated using the regularized 
Log2-transformed normalized counts for all detected 
genes were used as input for the pathway analysis, as 
well as for data quality control assessment and visu-
alizations including heatmaps. PAGE was used to iden-
tify significant gene ontology (GO) terms as previously 
described ([10], and references within). Briefly, PAGE 
GO term Z-scores were calculated based on predicting 
how gene expression changes in a gene set could affect a 
given pathway(s). A significant GO term was defined as 
having a minimum of 3 genes and maximum 300 genes 
in the gene set, and a p-value and its corrected FDR 
both < 0.05. IPA was utilized to identify genes enriched in 
canonical pathways and specific disease related function 
gene–gene interaction networks using the same cutoff 
as the significant gene selection described above. Signifi-
cant canonical pathways were defined as having a -Log10 
p-value > 1.301 (or p < 0.05).

Results
Differential gene expression with frailty and sex
The number of significant, differentially expressed genes 
(DEGs) varied by frailty status and sex (Fig. 1). Twenty-
three genes were significantly, differentially expressed 
in FRAM compared to NORM, while 47 genes were 

significant in FRAF relative to NORF (adjusted p < 0.05) 
(Fig.  1A-B, Additional files 2–3). The largest number 
of significant DEGs were found in the FRAM vs FRAF 
comparison, with a total of 86 DEGs (adjusted p < 0.05) 
(Fig.  1C, Additional file  4), while 78 genes were signifi-
cantly, differentially expressed in the NORM vs NORF 
comparison (Fig. 1D, Additional file 5). Many of the sig-
nificant DEGs in the FRAM vs NORM comparison group 
were significantly decreased in FRAM compared to 
NORM (Fig. 1A, Additional file 2). Similarly, significant 
DEGs in the FRAF vs NORF comparison were largely 
decreased in FRAF relative to NORF (Fig. 1B, Additional 
file  3). The significant DEGs from the FRAM vs FRAF 
comparison group had mostly increased gene expres-
sion in FRAM relative to FRAF (Fig.  1C, Additional 
file 4). Conversely, the ratio of significantly increased to 
decreased DEGs from the NORM vs NORF comparison 
group were similar (Fig. 1D, Additional file 5).

To identify significant DEGs that could potentially 
distinguish sex-specific differences in frailty pathophysi-
ology, we compared the lists of significant DEGs from 
each respective comparison group (including NORM vs 
NORF as a control comparison group) for overlapping 
and exclusive DEGs among the 4 comparison groups 
(Fig. 2A). No significant DEGs were shared among all 4 
groups, nor were any DEGs shared between FRAM vs 
NORM, FRAF vs NORF, and FRAM vs FRAF compari-
son groups (Fig. 2A). Additionally, there were no overlap-
ping DEGs between the FRAM vs NORM and FRAF vs 
NORF groups. Only 1 DEG, CH507-513H4.3, was shared 
between FRAM vs NORM and FRAM vs FRAF (Fig. 2A). 
CH507-513H4.3 is a long noncoding (lnc) RNA and was 
up-regulated in FRAM relative to NORM (9.1 Log2 fold 
change) as well as in FRAM compared to FRAF (9.4 Log2 
fold change) (Additional file  2, Additional file  4). Eight 
DEGs were shared between the FRAF vs NORF and 
FRAM vs FRAF comparison groups (Fig.  2A). Six out 
of the 8 shared DEGs were associated with inflamma-
tion (HLA-DPA1, IL1B) and chemokine signaling (CCL3, 
CCL3L3, CCL4, CCL4L2) pathways, while the remain-
ing 2 DEGs were lncRNAs (MEG3 and RP11-221J22.1). 
All 8 shared DEGs had significantly decreased expression 
in FRAF compared to NORF (Additional file 3) but were 
significantly increased in FRAM relative to FRAF (Addi-
tional file 4).

Interestingly, most of the significant DEGs were 
exclusively identified in their respective comparison 
group (Fig.  2A). For example, 14 out of the 23 sig-
nificant DEGs were unique to the FRAM vs NORM 
comparison group (Fig.  2C). Only 3 of the 14 unique 
DEGs (FCGR3B, IL1R2, and LRG1) have been iden-
tified in previous frailty studies and an additional 
3 DEGs (PLIN4, PLIN5, and MGAM) have been 
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implicated in aging (Additional file  2). Novel DEGs 
exclusive to the FRAM vs NORM group were associ-
ated with many physiological processes such as lipid 
transport and metabolism (PLIN4, PLIN5, MGAM, 
and CTD-3088G3.8), cell structure (SAXO2  and JUP), 
and the musculoskeletal system (SAXO2, JUP, ALPL, 
PLIN4, and PLIN5) (Additional file 2).

Thirty-six out of the 47 significant DEGs in the FRAF 
vs NORF comparison group were exclusively identified 
in this group (Fig.  2D, Additional file  3). Of these 36 
exclusively identified DEGs, 11 (CST7, G0S2, GPR15, 
GABARAPL1, PRF1, SMAD7, OTUD1, S1PR5, PDGFD, 
TGFBR3, and NR4A3) have been previously associ-
ated with frailty (Additional file  3), while the remain-
ing 29 DEGs were novel. These novel DEGs serve roles 
in multiple biological functions including but not lim-
ited to signal transduction, reactive oxygen species 
regulation, circadian rhythm, and cellular structure and 
maintenance (Additional file  3). Additionally, some of 
the novel DEGs have also been previously described in 
aging (LRRN3, ZFP36L2, ABCA2, ID2, GABARAPL1, 
and NKG7, see Additional file  3). Consistent with one 
of the hallmarks of frailty pathophysiology, many of 
the novel DEGs exclusively identified in the FRAF vs 
NORF comparison group were associated with modu-
lating immune and inflammatory responses (ZFP36L2, 
KLF9, BHLHE40, MATK, TSC22D3, ID2, NKG7, GFI1, 
PTGER4, PER1, DDIT4, and TNFSF9) and had sig-
nificantly decreased expression in FRAF compared to 
NORF (Additional file 3).

Seventy-three significant DEGs were unique to the 
FRAM vs FRAF comparison group (Fig. 2B, Additional 
file 4). Only 17 of the 73 exclusive DEGs (IL1A, CXCL3, 
CXCL2, CXCL8, TNF, NFKBIA, IL1RN, PPP1R15A, 
PTX3, ICAM1, RIPK2, SOD2, CYP27A1, PPIF, SLC2A6, 
FTH1, and SULF2) from the FRAM vs FRAF compari-
son have been described in frailty literature (Additional 
file  4). Similarly to the other frailty sex comparison 
groups, several novel DEGs exclusive to the FRAM vs 
FRAF group also have putative roles in aging (ATF3, 
BCL2A1, FCAR​, IER2, IER3, PDZK1IP1, and SSPN, 
see Additional file 4). Novel DEGs were also associated 

Fig. 1  Gene expression differences associated with sex and frailty 
status. Detected genes from the A. FRAM vs NORM comparison, B. 
FRAF vs NORF comparison, C. FRAM vs FRAF, and D. NORM vs NORF 
comparison are plotted by Log2 fold change (x-axis) and –Log10 
transformed p-adjusted values (padj, y-axis). Data points in red 
indicate genes significant by a padj < 0.05, and purple indicates 
padj < 0.01. For each comparison, the top 3 most significantly 
increased and decreased genes are denoted. For a complete list of all 
significant genes, refer to Additional files 2,3, 4, and 5
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with proteostasis, mitochondrial function, metabolism, 
signal transduction, cell structure, and other biological 
processes (Additional file 4). Additionally, many of the 
novel and exclusive DEGs to the FRAM vs FRAF group 
have multiple roles in frailty and sarcopenia-related 
pathological processes such as inflammation (TNFAIP3, 
BCL2A1, ZFP36, CCL20, DUSP1, FCAR​, RNF19B, 
CCRL2, CLEC4D, FTH1, and SIGLEC14), musculo-
skeletal system (ATF3, DUSP1, TNFAIP3, FCAR​, PPIF, 
MARCKS, SSPN, KLF10, and TANC1), and cell cycle 
and apoptosis (IER3, ATF3, TNFAIP3, DUSP1, BCL2A1, 
H1F0, PPIF, PUDP, and ERCC6L) (Additional file 4). Of 
note, we also found that 27 of the 61 novel FRAM vs 
FRAF specific DEGs were noncoding RNAs (Additional 
file 4), while the FRAM vs NORM and FRAF vs NORF 
comparison groups only had 1 significant noncod-
ing RNA, respectively (FRAM vs NORM = FAM157A; 
FRAF vs NORF = AC131056.3) (Additional files 2 and 
3). These results suggest sex-specific gene expression 
changes associated with frailty occur in midlife.

Frailty and sex pathway analyses
To discover sex-specific biological and molecular path-
ways altered in frail, middle-aged individuals, IPA was 
used to identify significant canonical pathways, while 
PAGE analysis was used to identify significant GO terms 
associated with biological processes, molecular func-
tions, and cellular processes. Forty-four IPA canonical 
pathways were significant in the FRAM vs NORM com-
parison, 113 in the FRAF vs NORF comparison, 93 in 
the FRAM vs FRAF comparison, and 88 in the NORM vs 
NORF comparison (Additional files 6,7,8, and 9). PAGE 
analyses identified 28 GO biological processes, 20 GO 
molecular functions, and 9 GO cellular components were 
significant in the FRAM vs NORM comparison group 
(Additional files 10,11, and 12). In FRAF vs NORF, 91 
GO biological processes, 44 GO molecular functions, 
and 20 cellular components were significant (Additional 
files 13,14, and 15). Sixty GO biological processes, 39 GO 
molecular functions, and 22 GO cellular components 
were significant in the FRAM vs FRAF comparison group 
(Additional files 16,17, and 18). Finally, 27 GO biological 
processes, 21 GO molecular functions, and 15 GO cellu-
lar components were significant in the NORM vs NORF 
comparison group (Additional files 19,20, and 21).

We evaluated the IPA canonical pathways and GO bio-
logical processes for overlaps among the 4 frailty com-
parison groups (Additional file  22). Nineteen canonical 
pathways were shared among all 4 frailty comparison 
groups (Additional file 22A), while only 1 GO biological 
process was shared between all 4 (Additional file  22B). 
Five canonical pathways and biological processes, respec-
tively, were shared between the FRAM vs NORM, FRAF 
vs NORF, and FRAM vs FRAF groups (Additional file 22). 
We also assessed exclusive pathways and GO biological 
processes per respective comparison group to identify 
sex-specific pathway differences by frailty status. When 
examining IPA canonical pathways, 12 were exclusively 
identified in FRAM vs NORM, 30 in FRAF vs NORF, and 
17 in FRAM vs FRAF (Additional file  22A, Additional 
files 6,7, and 8). To identify pathways predicted to be acti-
vated or inhibited, we focused our attention to exclusive 
IPA canonical pathways with a calculated Z-score. Based 
on this criteria, 4 canonical pathways were only identified 
in FRAM vs NORM (Fig. 3A, Additional file 6), 18 were 
unique to FRAF vs NORF (Fig. 4A, Additional file 7), and 
14 were exclusive to FRAM vs FRAF (Fig. 5A, Additional 
file 8). For the GO biological processes, 7 were unique to 
FRAM vs NORM (Fig. 3B, Additional file 22B, Additional 
file 10), 38 in FRAF vs NORF (Fig. 4B, Additional file 22B, 
Additional file  13), and 14 in FRAM vs FRAF (Fig.  5B, 
Additional file 22B, Additional file 16).

Canonical pathways and biological processes in frail males
To get a better understanding of the pathophysiology of 
frailty in males, we examined the IPA canonical pathways 
exclusively identified in the FRAM vs NORM group. 
These pathways were associated with glycosaminoglycan 
(GAG) catabolism (“Chondroitin Sulfate Degradation” 
and “Dermatan Sulfate Degradation”), estrogen (“Estro-
gen Biosynthesis), and inflammation (“IL-15 Produc-
tion”) (Fig.  3A). Deficiencies in chondroitin sulfate (CS) 
and dermatan sulfate (DS) degradation enzymes result in 
the accumulation of CS, DS, and other GAGs in the lyso-
some [22]. This lysosomal GAG accumulation can initi-
ate several secondary molecular cascades that disrupt 
signaling pathways regulating inflammation and impor-
tantly skeletal structure and integrity [22]. Furthermore, 
male estrogen levels have a protective skeletal effect and 
mediates bone biosynthesis through the CS subtype, 
CS-E [23]. Here reduced CS and DS degradation, and 

Fig. 2  Significant differentially expressed genes exclusively identified per frailty group comparison. A. Venn diagram comparing lists of significant 
genes (Log2 fold change ≥ 0.58 or ≤ -0.58) identified from FRAM vs NORM (yellow), FRAF vs NORF (blue), FRAM vs FRAF (purple), and NORM vs 
NORF (gray) as a reference. The significant, differentially expressed genes exclusively identified in the B. FRAM vs FRAF, C. FRAM vs NORM, and D. 
FRAF vs NORF comparisons are presented as heatmaps. For each respective heatmap, columns represent individual samples and rows represent 
gene Z-scores. Only significant genes with a Log2 fold change ≥ 0.58 or ≤ -0.58 are plotted. Refer to Additional files 2, 3, 4, and 5 for complete list of 
significant genes

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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consequent CS/DS accumulation, in FRAM could disrupt 
proper signaling for skeletal and connective tissue integ-
rity perhaps leading to aberrant inflammation.

Consistent with this idea, we observed GO bio-
logical processes uniquely identified in the FRAM vs 
NORM group were associated with reduced degra-
dative and homeostatic processes as well as reduced 

Fig. 3  Biological pathways exclusive to FRAM vs NORM. A. Significant IPA canonical pathways (y-axis) uniquely identified in the FRAM vs NORM 
comparison group are plotted by –Log10 transformed p-values (x-axis). Red bars indicate a positive Z-score, blue bars indicate a negative Z-score. 
B. Significant GO biological processes (y-axis) exclusively identified in the FRAM vs NORM comparison group, plotted by Z-score (x-axis). C. All 
significant GO molecular functions (y-axis) identified in the FRAM vs NORM group, plotted by Z-score (x-axis). Refer to Additional files 6 and 10, 11, 
12 for complete lists of IPA canonical pathways and GO terms. Abbreviations: “(-)” = negative; “REG.” = regulation
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signal transduction (Fig.  3B). GO biological processes 
associated with ubiquitin and proteostasis were down-
regulated in FRAM compared to NORM (Fig. 3B). Sign-
aling-related GO biological processes and molecular 
functions were also reduced in FRAM (Fig.  3B and C). 
With respect to CS and DS degradation pathways, we 
also observed the GO molecular functions “Procollagen 
N endopeptidase activity”, “Hydrolase activity”, and “Hya-
lurononglucosaminidase activity” were down-regulated 
in FRAM (Fig. 3C). These findings suggest unique biolog-
ical processes and molecular functions are altered with 
frailty in males.

Canonical pathways and biological processes exclusive 
to frail women
IPA canonical pathways that were only identified in 
the FRAF vs NORF group were largely associated with 
immune responses and inflammation (Fig.  4A). For 
example, we identified T helper cell pathways, interleukin 
signaling pathways, and lymphocyte signaling pathways 
were significantly altered in FRAF compared to NORF 
(Fig. 4A). Interestingly, all these pathways are down-reg-
ulated in FRAF. GO biological processes uniquely iden-
tified in the FRAF vs NORF group were consistent with 
these observations (Fig. 4B). The GO biological processes 
“Negative regulation of immune response” was up-regu-
lated, while “Complement activation classical pathway” 
and “Complement activation” were down-regulated 
(Fig.  4B). GO molecular functions revealed “Antigen 
binding” was up-regulated in FRAF compared to NORF, 
while “Cytokine activity” and “Chemokine activity” were 
down-regulated (Fig. 4C).

Additional pathways were associated with signal trans-
duction and cellular structure (Fig. 4A). For example, the 
“TNFR1 signaling” and “NF-kB signaling” pathways have 
crucial roles in both inflammation and signal transduc-
tion. Other signal transduction pathways and biological 
processes were also associated with frailty in females and 
in general were reduced with frailty. Consistent with sig-
nal transduction roles, GO biological processes uniquely 
identified in the FRAF vs NORF group included “Small 
GTPase mediated signal transduction” and “G protein 
coupled receptor protein signaling” (Fig.  4B). Apart 
from the “Intracellular protein transport across a mem-
brane” GO term, all other GO biological processes were 

significantly reduced (Fig.  4B). GO molecular functions 
associated with signal transduction included reduced 
“GTPase activator activity”, “GTP binding”, and “Signal 
transducer activity” (Fig.  4C). There were several GO 
biological processes and molecular functions that were 
associated with regulation of the actin cytoskeleton and 
cartilage, all of which were significantly down-regulated 
in FRAF (Fig. 4B and C).

Canonical pathways and GO biological processes exclusive 
to frail men vs frail women
Many of the pathways exclusively identified in the 
FRAM vs FRAF group were predominantly associated 
with cell cycle and metabolic processes (Fig.  5), includ-
ing the “Aryl hydrocarbon receptor signaling” pathway 
(Fig.  5A), “Kinetochore metaphase signaling pathway”, 
and “Estrogen-mediated S-phase entry” (Fig.  5A). GO 
biological processes exclusively identified in the FRAM 
vs FRAF comparison group included up-regulation of cell 
cycle, chromatin remodeling, and DNA repair (Fig. 5B). 
We also observed the GO molecular functions “Cyclin 
dependent protein kinase regulator activity” and “micro-
tubule motor activity” were down-regulated in FRAM vs 
FRAF (Fig. 5C). The metabolic-related pathways “Dopa-
mine degradation”, “Noradrenaline and adrenaline degra-
dation”, and “Fatty acid alpha-oxidation” all had positive 
Z-scores (Fig.  5A), suggesting that catabolism could be 
up-regulated in FRAM compared to FRAF. Related GO 
molecular functions such as “Oxidoreductase activity” 
and “NADH dehydrogenase ubiquinone activity” were 
also up-regulated (Fig. 5C).

The “Salvage pathways of pyrimidine deoxyribonu-
cleotides” had a positive Z-score (Fig.  5A). Pathogens 
and viruses can utilize pyrimidine deoxyribonucleotide 
salvage pathways to self-replicate [24]. Interestingly, we 
observed that the “Coronavirus pathogenesis pathway” 
was (Fig. 5A) up-regulated in FRAM compared to FRAF. 
Consistent with this finding, the other immune response 
GO biological processes “Antigen processing and presen-
tation” and “Negative regulation of T cell proliferation” 
and molecular functions associated with inflammation 
and immune response were exclusive to the FRAM vs 
FRAF comparison group (Fig.  5B-C). These data show 
important differences between frail males and females in 

Fig. 4  Biological pathways exclusive to FRAF vs NORF. A. Significant IPA canonical pathways (y-axis) uniquely identified in the FRAF vs NORF 
comparison group are plotted by –Log10 transformed p-values (x-axis). B. Significant GO biological processes (y-axis) exclusively identified 
in the FRAF vs NORF comparison group, plotted by Z-score (x-axis). C. All significant GO molecular functions (y-axis) identified in the FRAF vs 
NORF group, plotted by Z-score (x-axis). Refer to Additional files 7 and 13, 14, 15 for complete lists of IPA canonical pathways and GO terms. 
Abbreviations: “Reg. of the EMT by GFs Pathway” = Regulation of the Epithelial Mesenchymal Transition by Growth Factors Pathway; “DM” = Diabetes 
Mellitus; “ALS” = Amyotrophic lateral sclerosis; “(-)” = negative; “( +)” = positive; “REG.” = regulation; “FGFR” = fibroblast growth factor receptor; 
“GPCR” = G-protein coupled receptor

(See figure on next page.)
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pathways related to coronavirus pathogenesis, immune 
responses, and inflammation.

Discussion
This study examined sex differences in global gene 
expression changes associated with frailty in a middle-
aged cohort. We found sex specific novel genes and bio-
logical pathways implicated in frailty pathophysiology. 
Compared to non-frail women, genes and pathways asso-
ciated with inflammation were down-regulated in frail 
women, while frail men had molecular changes related to 
proteostasis and musculoskeletal structure and integrity 
compared to non-frail men. Transcriptome differences 
between frail men and frail women reflected processes 
associated with cell cycle regulation, metabolism, and 
immune responses.

We aimed to identify molecular targets and pathways 
that could contribute to previously observed sex-specific 
health disparities in frailty. While some of the uniquely 
identified significant genes from each respective compar-
ison group have been previously described in frailty liter-
ature, many of the genes appear to be novel and may serve 
important roles in frailty-associated pathological mecha-
nisms. For example, JUP and ALPL were exclusively 
identified in the FRAM vs NORM comparison and have 
been associated with musculoskeletal development [25] 
and bone mineralization [26], respectively. TSC22D3, a 
gene uniquely identified in the FRAF vs NORF compari-
son, codes for the glucocorticoid-induced leucine zip-
per (GILZ) protein, in which decreased expression has 
been associated with inflammaging in mice [27]. IER3, 
uniquely identified in the FRAM vs FRAF comparison 
group, was previously associated with mortality [28] and 
can inhibit NF-κB signaling in response to TNF-α activa-
tion via negative feedback loop [29]. Therefore, several of 
the frailty-associated genes identified in our analysis may 
have physiological relevance in frailty.

Notably, we also observed over a third of the novel 
genes exclusively found in the FRAM vs FRAF com-
parison were noncoding RNAs (ncRNAs). Limited stud-
ies have examined noncoding RNAs in frailty and have 
mostly focused on miRNA expression, many of which 
are involved in inflammatory processes [30, 31]. Con-
sistent with these findings, some of the novel ncRNAs 
exclusively identified in the FRAM vs FRAF comparison 
group have been previously associated with inflamma-
tory processes. For example, LINC00936 and LINC00528 

were recently predicted to interact with TLR2 and the 
Toll-like receptor signaling pathway in acute myocardial 
infarction [32]. Another study showed overexpression of 
LINC00936 in cardiomyocytes resulted in significantly 
reduced amounts of IL-10 and higher amounts of IL-6, 
IL-1β, and TNFα [33]. Collectively, our results suggest 
ncRNAs could potentially contribute to sex-specific dif-
ferences associated with chronic inflammation in aging 
and frailty. Given that a miRNA panel has been recom-
mended to be incorporated into a core biomarker panel 
for frailty [34], future studies will be needed to under-
stand the contributions of miRNAs and other ncRNAs 
driving sex-specific differences in frailty.

Pathways unique to the FRAM vs NORM comparison 
group suggest processes regulating musculoskeletal and 
connective tissue physiology could be reduced in frail 
men. Increased risk of fractures and bone deficits as well 
as reduced muscle mass and strength have been well-
documented in frailty for men and women (reviewed in 
[35]). Another study examined sex-specific sarcopenia 
prevalence in individuals after hip fracture and found 
sarcopenia was significantly higher in men compared to 
women [36]. Hormonal imbalance has been proposed 
to contribute to abnormal musculoskeletal physiology 
in frailty [35]. The estrogen biosynthesis pathway was 
uniquely identified in the FRAM vs NORM compari-
son group and was upregulated in FRAM compared to 
NORM. Studies examining the relationship between 
estrogen, musculoskeletal physiology, and frailty in men 
have produced conflicting results. Notably, a recent 
study found frail men with greater baseline estradiol 
concentrations had a decreased likelihood of improv-
ing their frailty status [37]. Whether increased estrogen 
biosynthesis confers a protective or detrimental effect in 
middle-aged frail men is unclear and requires additional 
investigation.

Another potential mechanism contributing to mus-
culoskeletal deficits includes chronic low-grade inflam-
mation [35]. For example, IL-15 has been implicated 
in bone-muscle cross-talk [35]. The IL-15 produc-
tion pathway was up-regulated in FRAM compared 
to NORM. Interestingly, the accumulation of GAGs 
such as DS has been shown to activate inflammatory 
processes [38], and a recent proteomic study in frailty 
revealed glycosaminoglycan metabolism was one of 
the top pathways associated with frailty [39]. In line 
with these observations, we observed down-regulation 

(See figure on next page.)
Fig. 5  Biological pathways exclusive to FRAM vs FRAF. A. Significant IPA canonical pathways (y-axis) uniquely identified in the FRAM vs FRAF 
comparison group are plotted by –Log10 transformed p-values (x-axis). B. Significant GO biological processes (y-axis) exclusively identified in the 
FRAM vs FRAF comparison group, plotted by Z-score (x-axis). C. All significant GO molecular functions (y-axis) identified in the FRAM vs FRAF group, 
plotted by Z-score (x-axis). Refer to Additional files 8 and 16, 17, 18 for complete lists of IPA canonical pathways and GO terms. Abbreviations: 
“Pyr.” = pyrimidine
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of CS and DS degradation pathways in FRAM. CS and 
DS degradation mechanisms have been unexplored in 
frailty. Given the broad downstream molecular and cel-
lular effects of GAG accumulation, it is possible that 
aberrant signal transduction observed in frailty could be 
due to GAGs.

Pathways uniquely identified in the FRAF vs NORF 
comparison group suggest reduced inflammation could 
be mediated through reduced T cell and interleukin sign-
aling. BHLHE40 is a transcription factor with roles in 
Th1 and Th17 effector and pathogenic functions, as well 
as supporting mitochondrial fitness and metabolism in 
CD8 + tissue-resident memory cells and tumor-infiltrat-
ing lymphocytes [40]. In line with these observations, 
we observed down-regulation of multiple T helper cell 
pathways including Th1 and Th17 activation in FRAF 
compared to NORF. TNFSF9 codes for 4-1BB or CD137 
ligand, which has been implicated in the activation, 
response, maintenance, and survival of various immune 
cells, especially for T cells (reviewed in [41]). Consistent 
with these roles, we also observed down-regulation of the 
4-1BB signaling in T lymphocytes pathway in FRAF rela-
tive to NORF.

This seems to conflict with current knowledge of 
inflammation in frailty, where pro-inflammatory 
cytokines and processes are upregulated while anti-
inflammatory processes are reduced (reviewed in [42, 
43]). However, our results still support the notion that 
aberrant immunological and inflammatory processes 
are more pronounced in women compared to men [44]. 
Future work lies in determining how these inflammatory 
processes are dysregulated in middle-aged frail women.

Pathways exclusive to the FRAM vs FRAF compari-
son group suggested increased catabolism and down-
regulation of cell cycle pathways in FRAM relative to 
FRAF. Reduced energy metabolism has been linked to 
frailty [45]. We observed pathways associated with meta-
bolic degradation were upregulated in FRAM relative to 
FRAF. For example, the dopamine degradation pathway 
was upregulated in FRAM vs FRAF. One of the interme-
diate products of the dopamine degradation pathway is 
3,4-dihydroxyphenylacetic acid. A previous study showed 
dihydroxyphenyl acetic acid was decreased in pre-frail 
women but not men [45]. How changes in these meta-
bolic degradation pathways contribute to pathophysiol-
ogy differences between frail men and frail women will 
require additional investigation.

Cell cycle control is one of the hallmarks of aging. A 
previous study found increased frailty, low BMI, and 9 
upregulated transcripts with roles in cell cycle, inflam-
mation, and mitochondrial function were the best pre-
dictors of mortality [28]. In the present study, we found 
cell cycle related pathways were down-regulated in 

FRAM relative to FRAF, suggesting that cell cycle pro-
gression could be inhibited in FRAM. Cell cycle arrest is 
one of the key features of cellular senescence, which has 
been considered one of the mechanisms contributing to 
chronic inflammation in frailty [46]. Senescent cells can 
develop a senescence-associated secretory phenotype 
(SASP), which can secrete various inflammatory mol-
ecules such as IL-1α, IL-1β, IL-6, IL-8, and TNF-α [34]. 
We observed significantly increased gene expression for 
IL1A (IL-1α), CXCL8 (IL-8), TNF (TNF-α), and other 
pro-inflammatory genes in FRAM relative to FRAF.

Thus, it is tempting to speculate that there may be dif-
ferences in immunosenescence between middle-aged 
frail men and frail women. A previous review proposed 
that men could undergo greater and more accelerated 
immunosenescence compared to women, potentially 
contributing to aging and survival differences [11]. Con-
sistent with this idea, men have faster extrinsic epigenetic 
age acceleration, which is an epigenetic aging measure 
that captures immunosenescence [47]. Functional vali-
dation studies will be needed to further investigate these 
differences.

On a timely note, we observed the Coronavirus patho-
genesis pathway was predicted to be upregulated in FRAM 
compared to FRAF and was uniquely identified in this 
respective comparison group. A recent review reported 
frailty was linked to coronavirus disease 2019 (COVID-19) 
severity risk and mortality [48]. Importantly, sex differ-
ences in COVID-19 severity and mortality have also been 
documented, where men have greater severe COVID-19 
prevalence and mortality [49]. Many of the upregulated 
genes annotated in the Coronavirus pathogenesis pathway, 
such as IL6 and CCL2, are associated with hypercytokine-
mia or cytokine storm, a systemic hyper-inflammatory 
state that has been shown to influence COVID-19 dis-
ease severity [49]. Related to our findings, women have a 
reduced chance to progress into systemic hyper-inflamma-
tory states including cytokine storms [49]. Additionally, a 
study examining COVID-19 patients with moderate dis-
ease found that men had increased levels of innate immune 
cytokines and robust induction of non-classical mono-
cytes, while women had robust T cell activation [49]. It is 
plausible that increased susceptibility to viral infections 
and cytokine storm in frail men could begin to manifest in 
midlife. This earlier manifestation could potentially con-
tribute to early mortality in frail men.

While our study provides novel insight into sex-spe-
cific transcriptome changes in middle-aged frailty, there 
are some limitations. In this study, the FRAIL scale was 
used to classify frailty [13]. There are multiple methods 
available to assess frailty such as the frailty phenotype 
and the frailty index [48], which are more commonly uti-
lized. However, these indexes require hospital settings, 
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which are not applicable for community-based research 
and clinics. We previously demonstrated validity of the 
FRAIL scale in the HANDLS cohort [7] and this frailty 
measure has been utilized extensively and successfully 
in community-based cohorts and patients [13]. Current 
transcriptome studies in frailty have only examined Euro-
pean and Asian older adult (≥ 65 years old) cohorts [30, 
50–57]. No transcriptome studies have examined frailty 
in diverse cohorts or frailty in midlife. Here, our results 
shed new light on the potential molecular drivers of sex-
based differences in frailty in a diverse cohort. Therefore, 
although our sample size is small the results from this 
study are still novel based on our methodology, diverse 
sample demographics, and age of our cohort.

Conclusions
Our transcriptome-wide results revealed sex-specific 
differences associated with frailty in midlife. This study 
builds on previous frailty work by confirming musculo-
skeletal, metabolic, and immunological and inflammatory 
processes are also disrupted in middle-aged frail indi-
viduals. Importantly, our work provides novel insight on 
candidate genes and biological pathways that could con-
tribute to molecular differences in inflammatory, mus-
culoskeletal, and other frailty pathophysiological profiles 
between middle-aged men and women. This work high-
lights the importance of examining frailty in middle-aged 
cohorts, before the older ages traditionally evaluated for 
frailty. By evaluating gene expression changes in a mid-
dle-aged frail cohort, we can begin to advance knowledge 
on frailty progression and identify potential therapeutic 
targets to prevent frailty.
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