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Abstract 

Background:  Transcranial direct current stimulation (tDCS) is a non-invasive type of brain stimulation that uses 
electrical currents to modulate neuronal activity. A small number of studies have investigated the effects of tDCS on 
cognition in patients with Mild Cognitive Impairment (MCI) and Alzheimer’s disease (AD), and have demonstrated 
variable effects. Emerging evidence suggests that tDCS is most effective when applied to active brain circuits. Aerobic 
exercise is known to increase cortical excitability and improve brain network connectivity. Exercise may therefore be 
an effective, yet previously unexplored primer for tDCS to improve cognition in MCI and mild AD.

Methods:  Participants with MCI or AD will be randomized to receive 10 sessions over 2 weeks of either exercise 
primed tDCS, exercise primed sham tDCS, or tDCS alone in a blinded, parallel-design trial. Those randomized to an 
exercise intervention will receive individualized 30-min aerobic exercise prescriptions to achieve a moderate-intensity 
dosage, equivalent to the ventilatory anaerobic threshold determined by cardiopulmonary assessment, to sufficiently 
increase cortical excitability. The tDCS protocol consists of 20 min sessions at 2 mA, 5 times per week for 2 weeks 
applied through 35 cm2 bitemporal electrodes. Our primary aim is to assess the efficacy of exercise primed tDCS for 
improving global cognition using the Montreal Cognitive Assessment (MoCA). Our secondary aims are to evaluate the 
efficacy of exercise primed tDCS for improving specific cognitive domains using various cognitive tests (n-back, Word 
Recall and Word Recognition Tasks from the Alzheimer’s Disease Assessment Scale-Cognitive subscale) and neuropsy-
chiatric symptoms (Neuropsychiatric Inventory). We will also explore whether exercise primed tDCS is associated with 
an increase in markers of neurogenesis, oxidative stress and angiogenesis, and if changes in these markers are cor-
related with cognitive improvement.
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Background
Dementia is a neurocognitive disorder (NCD) charac-
terized by a progressive deterioration of cognitive and 
functional abilities [1]. Alzheimer’s Disease (AD) is 
the most common form of dementia, accounting for 
approximately 60-70% of all cases [2]. The diagnosis 
of a NCD, according to the Diagnostic and Statistical 
Manual of Mental Disorders -5th edition (DSM-5), can 
be classified as mild or major. Mild NCD, often referred 
to as Mild Cognitive Impairment (MCI), requires the 
presence of modest cognitive deficits without interfer-
ence in everyday activities, whereas major NCD includ-
ing AD requires both significant cognitive deficits and a 
reduced ability to perform everyday activities [3].

Cognitive problems are core deficits in MCI and AD. 
The earliest and most common clinical manifestation 
involves episodic memory impairment and a dimin-
ished ability to encode new material into long-term 
memory [4]. The temporal lobes of the brain are key 
structures in episodic memory, learning, and recall, and 
are damaged in AD [5]. These deficits are closely asso-
ciated with neuronal hypoactivity and synaptic dys-
function [6–10].

Cholinesterase inhibitors (ChEIs), including donepezil, 
rivastigmine, and galantamine, as well as the N-methyl-
D-aspartate antagonist, memantine, are approved for the 
symptomatic management of global cognitive impair-
ment in AD [11]. Although those drugs improve cogni-
tive performance, they are commonly associated with 
adverse events (AEs), such as drowsiness, loss of appe-
tite, nausea, and vomiting [12]. Memantine, specifically, 
lacks evidence for efficacy in patients with mild AD [13]. 
There is also a lack of consensus among clinicians regard-
ing issues related to initiation, optimal duration, and dis-
continuation [14]. The first disease modifying therapy, 
aducanumab, was recently approved by the FDA for AD, 
however, its approval is controversial due to ambiguous 
clinical trial results [15]. In patients with MCI, evidence 
does not support the use of ChEIs or memantine [16, 17], 
underscoring the need for effective treatments in this 
population in order to treat cognitive impairment in the 
early stages and help delay the progression from MCI to 
AD.

Individuals with AD frequently have neuropsychiat-
ric symptoms (NPS). In a recent retrospective study, the 
most prevalent NPS among AD patients included apathy 
(51.9%) followed by irritability (41.0%) and depression 
(36.4%) [18]. Sleep disturbances (31.7%) were also com-
monly present in AD [18] and can have a negative impact 
on both quality of life and caregiver burden [19]. Current 
pharmacological treatments for NPS in dementia are only 
modestly effective and can be associated with significant 
adverse effects [20].

Transcranial direct current stimulation (tDCS) is a 
non-invasive brain stimulation technique that consists 
of applying a constant, low electric current between 
electrodes over the scalp in order to modulate cortical 
excitability [21]. Anodal tDCS, considered an excitatory 
stimulation, reduces the threshold required for neuronal 
firing and has been shown to improve neural efficiency, 
mood, and cognition in healthy as well as depressed and 
AD patients [22]. Similar to other types of brain stimula-
tion, tDCS requires active neurons [23, 24], affecting the 
neurons that are closer to the discharge threshold (known 
as the activity-dependent model) [25, 26]. The effects of 
tDCS depend on the stimulation parameters used; how-
ever, studies have demonstrated that a single session of 
tDCS can induce changes in neuronal activity for up to 
2 h [27]. tDCS has been used in numerous studies involv-
ing older, frail participants with no serious adverse events 
(SAEs) noted [28, 29]. In a review examining 158 studies, 
commonly reported side-effects included burning sensa-
tion, itching, tingling, headache, discomfort, dizziness, 
erythema, and fatigue. However, the risk of AEs did not 
increase in repeated sessions of active tDCS compared to 
sham tDCS [30].

To date, 21 studies have investigated the effects of 
repeated sessions of tDCS on cognitive performance in 
MCI and AD populations [31–51]. Some studies found 
that repeated sessions of tDCS significantly improved 
global cognition in mild AD patients [33, 52]. In addition, 
recall, recognition, and working memory have improved 
following single and repeated sessions of tDCS in mild 
AD [32, 53–58]. However, there was significant variability 
in treatment response which may be related to individual 
neurophysiological and biological status [59], including 

Discussion:  We describe a novel clinical trial to investigate the effects of exercise priming before tDCS in patients 
with MCI or mild AD. This proof-of-concept study may identify a previously unexplored, non-invasive, non-pharma-
cological combination intervention that improves cognitive symptoms in patients. Findings from this study may also 
identify potential mechanistic actions of tDCS in MCI and mild AD.
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the level of cortical activity at the time of stimulations 
[60]. Based on new research on the activity-dependent 
model, studies have begun to investigate the use of com-
bining other cognitive enhancing interventions with 
tDCS to prime neurons of interest [61]. In healthy par-
ticipants, tDCS applied during a cognitive task resulted 
in greater improvement in performance of that cogni-
tive task compared to when tDCS was applied at rest and 
when sham was applied during the task [62]. Although 
few studies have examined these combined therapies in 
AD patients, tDCS with cognitive training has been asso-
ciated with greater improvements on some measures of 
cognition compared to sham tDCS with cognitive train-
ing, including the digit span, and trained and untrained 
picture-naming tasks [40].

Emerging evidence suggests that exercise may be an 
effective primer: a single bout of moderate-intensity 
aerobic exercise in healthy adults has been demonstrated 
to facilitate long-term potentiation-like neuroplasti-
city through increased motor-evoked potentials when 
exercise is performed prior to paired associative stimu-
lation [27, 63]. Those findings were also associated with 
improved motor learning in participants who received 
exercise prior to stimulation compared to the rest con-
dition (no exercise). In another study, a single bout of 
exercise (20 min of moderate-intensity cycling) resulted 
in increased cortical excitability and decreased intracor-
tical inhibition compared to those who did not undergo 
an exercise session prior to stimulation [64]. Patients 
with Parkinson’s disease who received repeated sessions 
of tDCS with physical therapy demonstrated greater 
improvements in measures of verbal fluency compared 
to those who received sham and physical therapy [65]. 
A direct combination of tDCS and aerobic exercise may 
provide synergistic effects where aerobic exercise pro-
vokes large-scale changes across the brain, priming the 
brain for focal modulation, and leading to more robust 
effects [27]. In our previous study, the subgroup of par-
ticipants who had cognitive impairment (baseline MoCA 
score ≤ 25) and who exercised at at least moderate-
intensity level (≥70% of peak oxygen uptake (VO2peak)) 
significantly improved on the MoCA at 3 months [66]. 
Those results suggest that moderate-intensity exercise 
can improve global cognitive function in individuals who 
are cognitively impaired, and is consistent with exercise 
being an effective primer to enhance the cognitive ben-
efits of tDCS.

In preclinical studies, tDCS has been shown to enhance 
secretion of brain-derived neurotrophic factor (BDNF), 
a neurotrophin with potent effects on neuronal survival 
and plasticity [67] and memory function [27, 68–71]. 
In  vitro, application of direct current stimulation may 
also be associated with increases in angiogenic markers 

including vascular endothelial growth factor (VEGF) and 
angiopoietin-2 (ANGP-2) [72], which may play an impor-
tant role in restoring memory through vascular survival 
[73]. In a vascular dementia mouse model, tDCS modu-
lated oxidative stress through reduction of reactive oxy-
gen species [74]. Reactive oxidative species can induce 
angiogenesis, and promote the production of angiogenic 
factors, such as VEGF [75]. These findings suggest that 
cognitive effects of tDCS may be partly mediated by neu-
rogenesis and angiogenesis. In AD, peripheral BDNF 
concentrations are lower compared to controls [76]. In 
addition, vascular abnormalities leading to hypoperfu-
sion are associated with increases in anti-angiogenic 
markers such as endostatin, which can contribute to AD 
pathology [77]. Although studies have demonstrated 
improved cognitive performance following tDCS in 
patients with MCI or AD [27, 60], there are no studies 
that have investigated angiogenic or neurogenic markers 
that may be mediating tDCS-induced cognitive improve-
ment in MCI or AD patients. Given the negative impact 
of cognitive impairment in individuals with MCI and 
AD, this parallel-design study aims to determine whether 
a combination therapy with tDCS and exercise priming 
effectively improves cognitive function and NPS, and 
whether cognitive response to tDCS treatment is associ-
ated with markers of neurogenesis and angiogenesis.

Objectives
The primary objective of the Exercise as a Primer for 
Excitatory Stimulation Study (EXPRESS) is to determine 
the efficacy of a combined exercise and tDCS interven-
tion to enhance the effect of tDCS on global cognitive 
function.

Secondary objectives: to explore the efficacy of a com-
bined exercise and tDCS intervention to enhance the 
effect of tDCS on specific cognitive domains and NPS.

Exploratory objectives: To identify mechanistic cor-
relates of cognitive response to tDCS treatment through 
analysis of blood biomarkers.

Methods
Study population and eligibility criteria
Participants will be recruited through outpatient clinics 
within Sunnybrook Health Sciences Centre (SHSC) and 
referrals from physicians outside of SHSC within the 
Greater Toronto Area. Participants will be assessed based 
on inclusion and exclusion criteria highlighted in Table 1.

Study design
This is a randomized, blinded, repeated-session, parallel-
design study. Eligible participants will be randomized to 
one of three interventions: Exercise primer with tDCS, 
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Treatment as usual (TU) with tDCS, or Exercise primer 
with sham tDCS (Fig. 1).

Assessments will be conducted at the following time 
points: Screening/Baseline (T1): within two weeks of 
beginning the 5-week study and/or on the first day of 
study initiation prior to any exercise intervention/TU, 
Midpoint (T2): 3 weeks into the study and prior to tDCS/
sham, Endpoint (T3): study completion/at the end of 
the 5-week study, and Follow-Up with a physician (T4) 
(Table  2). At screening, inclusion and exclusion criteria 
(Table 1) will be assessed and demographic information 
(e.g. age, sex, ethnicity, education, sleep, caffeine, and 
alcohol intake, concomitant medications, comorbid ill-
nesses, surgical and medical history, smoking status, 
as well as physical fitness level) and standardized Mini-
Mental State Examination (sMMSE) score will be col-
lected. At baseline, midpoint, and endpoint, cognitive 
and NPS outcomes, as well as blood biomarkers, will be 

collected. For participants randomized to receive an exer-
cise intervention, an individual exercise prescription will 
be administered at baseline. For participants randomized 
to TU, written information in accordance with the Cana-
dian Physical Activity Guidelines for older adults will be 
given at baseline. Exercise will be documented weekly 
using the Leisure-Time Exercise Questionnaire (LTEQ) 
for all participants to monitor exercise frequency and 
intensity throughout the study. Participants will be fol-
lowed up by a qualified investigator (QI) or designated 
qualified physician within 2 weeks of study endpoint or 
termination.

Interventions
Exercise intervention
Current guidelines recommend that older adults par-
ticipate in at least 150 min/week of moderate-intensity 
aerobic activity [81], a level sufficient to increase cortical 

Table 1  List of inclusion and exclusion criteria

Inclusion Exclusion

• Males or females ≥50 years of age (on day of randomization)
• Clinical diagnosis of major or mild neurocognitive disorder due to AD 
or mixed AD/vascular disease following the DSM-5 [78] criteria by a 
psychiatrist
• Mild severity of impairment (sMMSE score ≥ 19) [79]
• Read and communicate in English

• Change in cognitive-enhancing medications (ChEIs and/or memantine) 
less than 3 months prior to study screen
• Change in anticonvulsants or psychotropic medications less than 1 month 
prior to study screen
• Currently taking benzodiazepines
• Presence of metal implants that would preclude safe use of tDCS (e.g. 
pace-maker)
• Significant neurological condition (e.g., epilepsy, Parkinson’s disease, 
multiple sclerosis)
• Current psychiatric disorders (e.g. schizophrenia, bipolar disorder, depres-
sion, psychosis) or current substance abuse disorder
• Medical contraindication to increasing physical activity level according to 
the Canadian Society of Exercise Physiology Questionnaire [80]

Fig. 1  Study Design. Cognitive, NPS, and blood draw assessments are completed at the − 3, 0, and 2-week time points
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excitability [64]. Following an initial cardiopulmonary 
exercise test at University Health Network-Toronto Reha-
bilitation Institute (UHN-TRI) to assess baseline cardi-
orespiratory fitness, an initial walking prescription will 
be given and set at a distance of approximately 0.8-1.6 km 
for 10-30 min depending on participant tolerance. The 
intensity will be at the ventilatory anaerobic threshold 
(VAT) and/or 60-80% of VO2peak. Prescriptions will be 
progressed every 3-4 sessions for 3 weeks to increase dis-
tance to reach a duration of 30 min and intensity to the 
level of the VAT and/or 80% of VO2peak. Participants will 
be instructed to exercise at UHN-TRI 3 times per week 
and at home 2 times per week for the first 3 weeks while 
the exercise intensity and/or duration is being increased. 
During the last 2 weeks, participants will be instructed 
to exercise at UHN-TRI 5 times per week. All exercise at 
UHN-TRI will be supervised and heart rate will be moni-
tored using Polar heart rate monitors to ensure moder-
ate intensity exercise is maintained. Prescribing intensity 
based on the VAT provides a metabolically uniform mod-
erate intensity exercise prescription. This is especially 

important as not all individuals are able to reach a “true” 
physiological maximum on the exercise stress test. Our 
research group previously conducted a study in par-
ticipants undergoing a 6-month cardiac rehabilitation 
exercise program at UHN-TRI, and demonstrated that 
exercise in older adults is a feasible intervention with 
85.6% adherence [66].

Treatment as usual (TU)
TU will include routine advice about physical activity 
for older adults and written information in accordance 
with the Canadian Physical Activity Guidelines for older 
adults [82] as is standard of care. Physical activity in older 
adults often remains below the recommended levels of 
at least 150 min per week [83]. Participants in this group 
will not receive a personalized exercise plan and will not 
have contact from an exercise physiologist during the 
intervention. Participants will be instructed not to exer-
cise before stimulation.

Table 2  Schedule of assessments

a This visit will also take place if the patient withdraws from study or is terminated early
b The Leisure-Time Exercise Questionnaire will be administered weekly during the study

Screening/ Baseline Midpoint Endpointa Follow-up
Visit T1

Study initiation
T2
3-weeks

T3
5-weeks 
/ study 
endpoint

T4
Within 2 weeks of T3

Demographics
  Clinical diagnosis of mild or major NCD due to AD or mixed AD/vascular 
disease following the DSM-5 criteria by a psychiatrist

X

  Demographics X

  Surgical and health history X

  Comorbid Illnesses and concomitant medications X X X

  Sleep, caffeine, alcohol intake, smoking status X X X

  Standardized mini-mental state examination X

  Canadian society of exercise physiology physical activity readiness 
questionnaire-plus

X

Outcomes
  Montreal cognitive assessment X X X

  Word recognition task X X X

  Word recall task X X X

  n-back X X X

  Neuropsychiatric inventory X X X

  Blood biomarkers X X X

Safety
  Adverse Events X X X

Other
  Leisure-time exercise questionnaireb X X X

  Follow-up assessment with qualified investigator or designated qualified 
physician

X
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tDCS
tDCS will be delivered by an Eldith DC stimulator (Mag-
stim Company Ltd. UK), using three saline-soaked 
sponge electrodes held in place by an elastic band cap. 
The two anodal electrodes will be placed bitemporally 
over the left and right medial temporal lobes (T3 + T4 
hemispheres) according to the International 10-20 system 
of electrode placement. Bitemporal placement with tDCS 
has shown cognitive improvements in MCI and AD [58], 
and neuroimaging findings on neuronal loss or hypoac-
tivity in temporal regions of both hemispheres [84] also 
support the regions’ activity in memory processing. The 
return electrode will be placed at the inion (Iz) (Fig. 2). 
In each session, tDCS would be administered with a cur-
rent strength of 2 mA for 20 min as these parameters are 
safe and commonly used in clinical research [85]. All 
study participants randomized to tDCS will receive tDCS 
5 times/week for 2 weeks. Those randomized to receive 
exercise will be given tDCS following their exercise ses-
sions. Compliance, including exercise and tDCS fre-
quency, will be measured and documented.

Sham tDCS
The same procedure for tDCS will be used for the sham 
condition, except the 2 mA current will only be applied 
in the ramp-up phase (first 30 s). In previous studies [28, 
86], this approach has ensured that the participants are 
blind to the type of stimulation (active versus sham).

Study outcomes
Cognitive assessments
We will administer a comprehensive cognitive battery 
composed of neuropsychological tests that have been 
previously used in mild AD, and have demonstrated sen-
sitivity to cognitive changes following tDCS [87]. Alter-
native versions will be used to avoid learning effects 
where applicable. The MoCA [88], a brief test of global 
cognition and a sensitive validated tool for detecting 
early cognitive changes in mild AD [89, 90], will be the 
primary outcome measure. The MoCA assesses multi-
ple domains including orientation, attention, executive 
function, language and abstraction in addition to mem-
ory [90]. Two weeks is appropriate to observe changes in 
global cognition [33] following a cognitive enhancement 
intervention.

Working memory will be assessed using the n-back 
[91]. The Word Recognition Task and the Word Recall 
Tasks from the Alzheimer’s Disease Assessment Scale-
Cog (ADAS-Cog) [92] will be used to assess recognition 
memory and recall memory respectively. These domains 
have also been shown to improve with exercise interven-
tions [93, 94]. The sMMSE [79] will be administered at 
screening to assess for severity of cognitive impairment; 
it is the most common short screening tool for assessing 
cognitive impairment overall [95].

NPS
The Neuropsychiatric Inventory (NPI) [96] will be used 
to measure apathy, agitation, delusions, hallucina-
tions, depression, euphoria, aberrant motor behaviour, 

Fig. 2  Schematic of electrode placements. Red and black circles represent anodal and return electrodes respectively
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irritability, disinhibition, anxiety, sleeping, and appe-
tite disturbances in patients and to evaluate caregiver 
distress. Each domain is scored for frequency, sever-
ity and caregiver distress. Doman score is obtained by 
multiplying frequency and severity. Total NPI score is 
obtained by summing the individual domain scores. The 
NPI has good content validity, internal consistency, test-
retest and interrater reliability, and is commonly used in 
research for the assessment of NPS in mild AD [97]. It 
will be administered to the patient’s caregiver through 
a standardized interview. Studies have shown that 
decreased cognition in MCI and AD is highly associated 
with increased NPS [98–100]. Therefore, effective treat-
ments for cognitive impairment may also improve NPS in 
patients with AD.

Physical activity
The LTEQ [87] will be administered to the patient or 
the patient’s caregiver weekly to measure frequency and 
intensity of exercise completed. The Canadian Society of 
Exercise Physiology Questionnaire [80] will be adminis-
tered to the patient or the patient’s caregiver at screen-
ing to assess for medical contraindications to a physical 
activity.

Biomarker assays
Angiogenic and neurogenic markers associated with 
exercise and tDCS outcomes, including BDNF, VEGF, 
ANGP-2, and endostatin, will be analysed using enzyme-
linked immunosorbent assay [76, 101–103]. Samples for 
analyses will be frozen (− 80 °C) immediately and batched 
for analysis. These angiogenesis and neurogenic markers 
have previously been shown to change following two or 
more weeks of an exercise intervention [104–108].

Randomization and blinding
A block randomization code will be computer-generated 
at SHSC and remain locked in a secure location in the 
department. The research personnel who will be admin-
istering the cognitive assessments will not be the inter-
ventionist administering the tDCS/sham intervention, 
and, with the remaining team members will be blinded to 
treatment allocation and block size until the final patient 
has completed follow-up and the database is locked. The 
patients will also be blinded to stimulation type. Unblind-
ing will not be allowed unless there exist exceptional clin-
ical circumstances that justify it (i.e., necessary for acute 
medical management of SAEs) and only after approval by 
the principal investigator (PI) or a QI.

Safety profile and monitoring
Side-effects will be monitored using a customized check-
list after each tDCS session. All emerging AEs that are 

clinically relevant based on a QI or designated qualified 
physician’s assessment will be noted and monitored until 
resolution. AEs will be appropriately described, i.e.: the 
association with the intervention will be coded as not 
related, possibly related or related; the determination of 
the severity and association will be decided by a QI. The 
QIs for this study will also be acting as the safety monitor, 
viewing all AEs.

New medical conditions developed during the study 
including musculoskeletal, cardiovascular or neurologi-
cal symptoms which may make continued exercise unsafe 
will be reported to a QI or the designated qualified phy-
sician. Patients will be evaluated by a study physician to 
ensure that the participant received appropriate medical 
attention and to determine whether the participant may 
safely continue or discontinue the study.

An SAE is any untoward medical occurrence that 
results in death, is life-threatening (defined as an event 
in which the patient was at risk of death at the time of 
the event; it does not refer to an event which hypotheti-
cally might have caused death if it were more severe), 
results in persistent or significant disability or incapac-
ity, requires hospitalization or causes prolongation of 
existing hospitalization, results in the development of 
drug dependency or drug abuse or is an important medi-
cal event defined as a medical event(s) that may not be 
immediately life-threatening or result in death or hos-
pitalization but, based upon appropriate medical and 
scientific judgment, may jeopardize the patient or may 
require intervention (e.g., medical, surgical) to prevent 
one of the other serious outcomes listed in the defini-
tion above. SAEs will be collected during the study and 
will be followed until event resolution or stabilization. All 
SAEs that are unexpected and potentially related to the 
research will be reported in an expedited manner to the 
Research Ethics Board at SHSC.

Adherence
Administration of exercise will be supervised by a physi-
cian, exercise physiologist, and designated research staff. 
Exercise frequency and intensity will be measured by 
the LTEQ weekly. Adherence to exercise regimen will be 
measured by information from the LTEQ and included as 
a covariate in statistical analyses.

Statistical plan
Sample size calculation
The sample size calculation was performed using 
G*Power version 3.1.9.2 (Kiel, Germany). The sample size 
was based on findings from a study reporting a 2-point 
change in MMSE score following anodal tDCS in mild 
to moderate AD [33]. No studies to date have assessed 
changes in the MoCA following anodal tDCS. However, 
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a strong correlation between the MMSE and MoCA 
(r = 0.86) in mild AD [89] implies that a similar change 
in the MoCA could be found in this population. Based 
on that assumption, a sample size of 60 completers (20 
per treatment group) achieves 83% power for a repeated 
measures analysis of covariance (ANCOVA), adjusting 
for 4 covariates with an alpha of 0.05 to detect a medium 
effect size.

Statistical analyses
Multiple imputation methods will be used prior to anal-
ysis if missing data exceed 10%. A repeated measures 
ANCOVA will be used to assess between group differ-
ences in change in MoCA score over 2 weeks (treatment 
group x time interaction). Age and education will be 
added as covariates. A treatment group x time interaction 
will also be used to explore between-group differences in 
the n-back, ADAS-Cog, total NPI score, and NPI sub-
scores. Repeated measures ANCOVAs will also be used 
to assess differences in markers of interest between treat-
ment groups. Associations between changes in concen-
trations of BDNF, VEGF, ANGP-2, endostatin and MoCA 
scores over 2 weeks will be assessed using repeated meas-
ures linear regressions. It is expected that randomization 
will balance possible confounders.

Data collection and management
Data will be collected on printed source documents/case 
report forms (CRFs). Source documents/CRFs include 
demographic information, medical information, cogni-
tive as well as mood and behaviour assessments. Source 
documents, CRFs, and other records pertaining to the 
conduct of this study will be retained for 10 years, as per 
SHSC Research Ethics Board (REB) recommendations.

Discussion
Recent studies have demonstrated that, individually, 
exercise and tDCS can enhance cortical excitability and 
improve cognitive functions in MCI and AD populations 
[60, 109]. Since tDCS may be most effective when applied 
to active neurons [23, 24], the combined treatment 
strategy, exercise-primed tDCS, may have greater effi-
cacy to improve cognition in MCI and AD patients. To 
our knowledge, no studies have examined the cognitive 
response of exercise-primed tDCS in MCI or AD. The 
findings from this trial may provide a novel combined 
treatment strategy for MCI and mild AD patients.

A small number of studies have examined other com-
bined interventions in MCI and AD, such as CT and 
tDCS [35, 40, 43, 44]; those studies only showed improve-
ments in specific targeted cognitive domains, and it still 
remains unclear whether the combined treatment pro-
duces better outcomes than tDCS alone [110]. Exercise 

can induce large-scale changes across the brain, prim-
ing the brain for focal modulation, and leading to more 
robust effects with tDCS [27]. Also, exercise-primed 
tDCS is advantageous over other multimodal strategies, 
including exercise and transcranial magnetic stimulation, 
because it is easy to implement, time and cost-efficient, 
and safe with no-known severe side effects [27]. Recently, 
tDCS has been investigated as a home-based therapy for 
MCI patients [111].

Neurogenic factors, such as BDNF, have been sug-
gested to have an influence on the response to tDCS 
[112]. Evidence has demonstrated that tDCS regulates 
BDNF expression and overall genetic variances of BDNF 
expression may be involved in the differences of indi-
vidual responses to tDCS stimulation [71, 112]. Cur-
rently, there have been no studies in MCI or AD patients 
that have investigated neurogenic mechanisms of tDCS 
response. Findings on potential blood biomarkers asso-
ciated with exercise, tDCS outcomes, angiogenesis and 
neurogenesis from this study may also identify potential 
mechanisms to delay impairment and preserve cognition 
in MCI and mild AD patients.

Given the potential wide availability of tDCS (available 
for home use) and current knowledge supporting effica-
cious exercise interventions, combined with the low risk 
of both interventions, this combination is highly feasible 
for widespread early intervention. As the populations suf-
fering from MCI and AD are largely elderly individuals 
who are heavily burdened by pharmacological agents, the 
ability to introduce a non-pharmacological treatment is 
of great importance and value to patients and clinicians.
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