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Grip strength from midlife as an indicator
of later-life brain health and cognition:
evidence from a British birth cohort
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Abstract

Background: Grip strength is an indicator of physical function with potential predictive value for health in ageing
populations. We assessed whether trends in grip strength from midlife predicted later-life brain health and cognition.

Methods: 446 participants in an ongoing British birth cohort study, the National Survey of Health and Development
(NSHD), had their maximum grip strength measured at ages 53, 60–64, and 69, and subsequently underwent
neuroimaging as part of a neuroscience sub-study, referred to as “Insight 46”, at age 69–71. A group-based trajectory
model identified latent groups of individuals in the whole NSHD cohort with below- or above-average grip strength
over time, plus a reference group. Group assignment, plus standardised grip strength levels and change from midlife
were each related to measures of whole-brain volume (WBV) and white matter hyperintensity volume (WMHV), plus
several cognitive tests. Models were adjusted for sex, body size, head size (where appropriate), sociodemographics, and
behavioural and vascular risk factors.

Results: Lower grip strength from midlife was associated with smaller WBV and lower matrix reasoning scores at age
69–71, with findings consistent between analysis of individual time points and analysis of trajectory groups. There was
little evidence of an association between grip strength and other cognitive test scores. Although greater declines in
grip strength showed a weak association with higher WMHV at age 69–71, trends in the opposite direction were seen
at individual time points with higher grip strength at ages 60–64, and 69 associated with higher WMHV.

Conclusions: This study provides preliminary evidence that maximum grip strength may have value in predicting
brain health. Future work should assess to what extent age-related declines in grip strength from midlife reflect
concurrent changes in brain structure.

Keywords: Grip strength, Physical function, Brain volume, White matter hyperintensity volume, Nonverbal reasoning,
Cognitive ageing
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Background
Grip strength is an objective measure of upper limb
strength and an indicator of overall physical function
[1]. It changes with age, reaching a plateau around age
thirty before beginning to decline after age fifty [2]. Men
generally have higher maximum grip strength than
women after controlling for body size [3], with a delayed
but steeper decline later in life [2]. Growing evidence
suggests that levels and changes in grip strength with
age may reflect the capacity to specify and coordinate
motor commands, and may be sensitive to subtle
changes in brain health [4], leading some to argue that
grip strength may have prognostic value in ageing popu-
lations [5, 6]. For example, grip strength has been linked
to multiple negative outcomes including lower later-life
physical capability [1], higher rates of later-life disability
[7] and mortality [8, 9], and cognitive impairment [10],
even when measured decades earlier in midlife [7, 8]
(around 45 to 65 years of age [11]).
Studies investigating the extent to which grip strength

is associated with cognitive function have mixed results.
Systematic reviews have indicated some evidence for
positive cross-sectional associations between grip
strength and cognitive function, and for longitudinal as-
sociations between their rates of change [12], but only
limited evidence for associations between grip strength
and subsequent cognitive decline [13]. Although these
discrepancies are partly due to heterogeneity in cohorts
and measures, cognitive tests may be insensitive to sub-
tle changes in neurological function. To overcome this
issue, recent studies have examined neuroimaging-
derived indices, such as whole-brain atrophy and white
matter hyperintensity volume (WMHV), an index of
presumed small vessel disease [14]. While declines in
whole-brain volume (WBV) and increases in WMHV
occur in healthy ageing [15, 16], both have been linked
to negative health outcomes including dementia and
cognitive decline [17, 18]. There is some cross-sectional
evidence linking lower grip strength to increased
WMHV [19] and lower WBV [20], though other studies
have reported null findings [21].
This study builds on these findings using the National

Survey of Health and Development (NSHD; the British
1946 birth cohort). Following an original sample of
5,362 men and women born in a single week in March
1946, the NSHD contains a wealth of life-course data
including physical and cognitive measures [22]. In
addition, 502 participants were selected for its neurosci-
ence sub-study, Insight 46, which incorporated cognitive
testing with MRI and PET neuroimaging at age 69-71
[23]. The present study assessed relationships between
grip strength from midlife, and brain health and cogni-
tion at 69–71. We speculated that physical performance
is influenced by concurrent neurological health, and

hypothesised that below-average trends in grip strength
from midlife predict lower WBV and increased global
WMHV, and below-average cognitive performance.

Methods
Participants
A total of 502 individuals from the NSHD were recruited
for the Insight 46 neuroscience sub-study at age 69–71
[24]. Of these, 446 participants (n = 218 females; 48.9 %)
had complete MRI data (WBV and global WMHV) plus
complete data for at least one of the whole-cohort nurse
visits at age 53 [25], 60–64 [26] or 69 [22] (see Figure S1
for an inclusion flow-chart).

Measures
Grip strength at 53, 60–64, and 69
Maximal grip strength was measured at each of the three
nurse visits using a calibrated handgrip dynamometer,
and defined as the maximum of four measures (two for
each hand) [27]. Given known sex differences, including
in this cohort [3], raw maximum grip strength (in kg)
was converted to a within-sex z-score (mean subtracted
and divided by the standard deviation (SD)), based on
the measures from the whole study sample (n = 2,850 at
53; n = 2,069 at 60–64; n = 2,103 at 69).

Cognitive & neuroimaging outcomes at 69–71
Cognitive tests were administered as part of Insight 46
[23]. These included tests of associative memory
(FNAME-12 [28]), episodic memory (Logical Memory
IIa delayed recall [29]), psychomotor speed and execu-
tive function (DSST [30]), and cognitive impairment
(MMSE [31]). Scores for each test were converted to z-
scores based on all 502 Insight 46 participants [32], and
the z-scores for each participant averaged to give a ver-
sion of the Preclinical Alzheimer Cognitive Composite
(PACC [33]). A test of matrix reasoning was also admin-
istered, which assesses nonverbal reasoning ability [34].
The neuroimaging metrics of interest, global WMHV

(mL) and WBV (cm3), were obtained from a single
60 min scan using a Biograph mMR 3T MRI/PET scan-
ner (Siemens Healthcare, Erlangen, Germany). Scans
were completed during the same visit as the cognitive
tests for all but 58 of the 446 participants. WBV was de-
rived from 3D T1-weighted MRI using an automated
segmentation procedure [35] followed by manual checks
and edits. Global WMHV, including subcortical grey
matter but not infratentorial regions, was derived from
multimodal MRI using an automated segmentation algo-
rithm, BaMoS [36].

Covariates
Covariates were sex; age, height (in cm) and weight (in kg)
at each nurse visit; adult Registrar General’s socioeconomic
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position (SEP) at 53 grouped into non-manual and manual;
and education level defined as the highest educational
qualification achieved by 26, categorised into no formal
qualifications, secondary school leavers exams, or any
degree.
Given known links between the neuroimaging metrics

in this study and vascular risk factors [37], cardiovascu-
lar risk measures were included by deriving office-based
Framingham Heart Survey cardiovascular disease (FHS-
CVD) risk scores at each nurse visit [38]. Physical activ-
ity at each nurse visit was defined as the number of
times participants reported taking part in activities re-
quiring physical exertion in the prior four weeks, cate-
gorised into inactive (none), moderately active (1–4
times), or highly active (5 + times) [39]. This measure
has been shown to be strongly associated with grip
strength in this cohort [40]. In addition, a binary variable
was derived to indicate whether participants showed evi-
dence of a cognitive or neurological condition at age
69–71, as assessed by a structured clinical interview [23].
Additional covariates specific to neuroimaging were

age at the scan and total intracranial volume (TIV) de-
rived using an automated procedure from the SPM12
package for MatLab [41]. Additional covariates specific
to cognitive outcomes were age at the Insight 46 visit,
and childhood cognition measured as general cognitive
ability at age 15 (n = 414), or at 11 (n = 21) or 8 (n = 11)
if missing [42].

Statistical Analyses
Prior to statistical analyses, continuous variables not
already z-scored (age, height, weight, and FHS-CVD risk
score at each nurse visit) were mean-centred on the analyt-
ical sample. For height and weight, this was done separately
in males and females. All statistical analyses were con-
ducted using Stata 16.1 (StataCorp, College Station, TX).

Associations between grip strength levels and changes from
age 53, with neuroimaging and cognition at age 69–71
Multivariable linear regression models were used to
quantify associations between grip strength at 53, 60–64,
and 69 and PACC, matrix reasoning, and WBV. Due to
distributional skew, bias-corrected and accelerated (BCa)
bootstrapping with 2,000 replications was used to obtain
valid 95 % confidence intervals (CIs) for associations
with matrix reasoning, while gamma family generalised
linear models (GLMs) with log link function were used
to quantify corresponding associations with WMHV, in
line with previous work in this cohort [32, 43]. The same
approaches were used to relate each outcome to grip
strength score change between 53 and 69. Since the z-
scores were calculated at each study wave, a change of 0
between age 53 and 69 indicates an average level of de-
cline, and positive values indicate above-average decline.

All models were adjusted for sex, age at the nurse
visit(s) and the Insight 46 scan or visit, height, weight,
sociodemographic factors, vascular and health risk
factors, and presence of cognitive or neurological im-
pairment at 69–71. In the models for change in grip
strength, life-course covariates were from the baseline
measure (age 53). All models with cognitive tests as the
outcome also adjusted for childhood cognition; models
for neuroimaging metrics also adjusted for TIV; and
models for WMHV also adjusted for weight squared (in
addition to weight) given evidence for a quadratic effect
of weight from residual plots. A sex by grip strength
interaction was also tested, with this term included if
there was evidence for such an effect at p < 0.1; coeffi-
cients and CIs were then presented for each sex. Model
fit was assessed for all models via residual plots.

Group-based trajectory modelling
Group-based trajectory modelling (GBTM) was used in
an exploratory manner to identify groups of individuals
following similar grip strength trajectories over time.
GBTM identifies latent groups of individuals based on
their patterns of responses, and models each group sep-
arately [44]. Notably, as GBTM can handle missing data,
all individuals in the whole NSHD sample with at least
one grip strength measure at age 53, 60–64 or 69 (n =
3078) were included in the model. Posterior probabilities
of group membership were calculated for each individual
for each group; the maximum of these was used to clas-
sify each participant into their most likely group. Models
with increasing numbers of groups were fitted, and in
line with recommendations [45], the optimal number of
groups was identified using the Bayesian Information
Criterion (BIC) and the mean posterior probability of
membership in each group among those assigned that
group (a metric of classification ambiguity [46]). Group
assignment was then related to each of the outcomes,
with the largest group taken as the reference. These
models adjusted for the same covariates as those relating
change in grip strength from midlife to the outcomes,
except that they excluded age at the time of the nurse
visits (as this was included in the GBTM). See Supple-
mentary Data Sec. 1 for further details.

Results
In the 446 participants, maximum grip strength fell from
an average of 47.2 kg (SD = 12.7; n = 211) at age 53, to
an average of 41.2 kg (SD = 8.3; n = 217) at age 69 in
men, and from an average of 29.5 kg (SD = 7.9; n = 205)
at age 53 to an average of 24.7 kg (SD = 5.5; n = 205) at
age 69 in women (Fig. 1A). The average decline from
age 53 to 69 was 5.6 kg (SD = 11.8; n = 200) in men, and
5.0 kg (SD = 7.6; n = 193) in women. Summary statistics
for grip strength and all covariates are presented in
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Table 1 (by sex where relevant), alongside those for all
others in the whole NSHD sample with complete re-
cords at each time point. As the raw grip strength mea-
sures were converted to within-sex z-scores, all results
are given as the effect of a 1 SD increase in maximum
grip strength on each of the outcomes.

Associations between grip strength levels and changes from
age 53, and neuroimaging and cognition at age 69–71
Higher grip strength at age 53, 60–64, and 69 was asso-
ciated with increased WBV adjusting for sex, body size,
TIV, sociodemographics, and behavioural and health risk
factors (Table 2; Fig. 2A). At age 53, there was weak evi-
dence for a sex by grip strength interaction (p = 0.075): a
1 standard deviation (SD) increase in maximum grip
strength in females was associated with 7.95cm3 in-
creased WBV up to 17 years later (95 % CI=(1.61,
14.30)) but little effect was seen in males (0.10cm3 in-
crease, 95 % CI=(-5.91, 6.10)).
At later study waves, there was limited evidence for a

sex difference, with 1 SD increases in maximum grip
strength at age 60–64 and 69 predicting an estimated
5.89cm3 (95 % CI=(1.56, 10.82)) and 5.59cm3 (95 % CI=
(0.90, 10.29)) higher WBV at age 69–71 respectively. In
line with these results, there was also a trend suggesting
that faster decline in grip strength between 53 and 69

was associated with lower WBV in males (p = 0.029 for
sex by grip strength interaction) but the trend was in the
opposite direction for females, albeit even weaker
(Table 2).
The associations of grip strength with WMHV were

less consistent (Fig. 2B). Unexpectedly, there was some
evidence that increased grip strength at age 53 and 60–
64 (but not 69) was associated with 10–12 % higher
WMHV at age 69–71 (GLM coefficients 1.10 and 1.12
respectively) in adjusted models. In contrast, 1 SD
greater decline in maximum grip strength between 53
and 69 was associated with an 10 % increase in WMHV
at age 69–71 (coefficient = 1.10; 95 % CI=(1.00, 1.22))
after adjustment. However, the statistical evidence for
these effects was fairly weak (Table 2).
For cognitive outcomes, there was a consistent trend

that higher grip strength was associated with higher
scores in matrix reasoning at 69–71 adjusting for sex,
body size, childhood cognition, sociodemographics, and
behavioural and health risk factors (Fig. 2D). The stron-
gest evidence for this was at age 60–64 where a 1 SD in-
crease in maximum grip strength was associated with a
0.12 increase in matrix reasoning score (BCa boot-
strapped 95 % CI=(0.04, 0.21)); the evidence for effects at
age 53 (coefficient = 0.07, 95 % CI=(-0.01, 0.16)) and age
69 (coefficient = 0.06, 95 % CI=(-0.05, 0.15)) was weaker.
There was limited evidence of associations between grip

Fig. 1 Trajectories of grip strength from age 53 to 69 in included participants (n = 446). A Individual maximum grip strength trajectories in all
included Insight 46 participants, stratified by sex, and coloured by their assigned group from the GBTM based on a total of 3,078 NSHD
participants (n = 7019 individual observations). Mean grip strength ± standard error (SE) error bars plus lower and upper quartiles (shown as
diamonds) are shown for the included Insight 46 participants for each of the three study waves (age 53, 60–64, and 69). B Grip strength z-score
trajectories for all included Insight 46 participants, coloured by their assigned trajectory group. Bold lines correspond to the estimated trajectory
for each of the groups derived from the GBTM, with error bars showing 95 % CIs at the mean age of each study wave, and the bold squares are
the mean grip strength z-score for each group at each study wave; note that the mean z-scores, estimated mean trajectories, and error-bars are
based on all NSHD participants included in the model (n = 3078)
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strength and PACC score, or that increased declines
in grip strength score from midlife were associated
with either of the cognitive metrics, and no interac-
tions with sex were seen for these measures (Table 2;
Fig. 2C-D).

Associations between GBTM group classification (based
on grip strength trajectory between 53 and 69) and
neuroimaging and cognition at 69–71
A three-group model was chosen as the best comprom-
ise between fit, classification ambiguity, and complexity

Table 2 Associations between grip strength levels/changes from midlife and brain health and cognitive measures at 69–71

Max grip at 53
(n = 416)

Max grip at 60-64
(n = 406)

Max grip at 69
(n = 422)

Change in grip from 53 to 69
(n = 393)

Brain health measures

WBV (cm3) M: 0.10 (-5.91, 6.10) 5.89* (1.22, 10.56) 5.59* (0.90, 10.29) -5.72 (-11.76, 0.32)

F: 7.95* (1.61, 14.30) 3.15 (-2.84, 9.14)

Global WMHV (mL) 1.10 (1.00, 1.21) 1.12 (1.00, 1.25) 1.04 (0.93, 1.16) 1.10 (1.00, 1.22)

Cognitive measures

PACC (z-score) 0.02 (-0.04, 0.08) -0.02 (-0.09, 0.04) -0.06 (-0.13, 0.00) 0.05 (-0.01, 0.11)

Matrix reasoning (z-score)‡ 0.07 (-0.01, 0.16) 0.12† (0.04, 0.21) 0.06 (-0.05, 0.15) -0.02 (-0.07, 0.10)

* p < 0.05
† BCa bootstrap 95% CI does not contain 0
‡ 95% CIs obtained from BCa bootstrap with 2,000 replicates
Coefficients (95% CIs) are derived from multivariable linear regression models or GLMs and represent the effect of a one z-score increase in grip strength on mean
WBV (cm3), mean z-score (cognitive measures) or the multiplicative effect for WMHV (as this is the exponentiated coefficient from the GLM). Z-scores for
maximum grip strength were calculated based on the whole NSHD cohort at each nurse visit; z-scores for cognitive tests were calculated based on all 502 Insight
46 participants. Models for levels included those with complete records at that age, models for changes included those with complete records at both age 53 and
69; all 446 participants were hence included in analyses for at least one time point. Decline was calculated as initial grip strength z-score minus final z-score, so
coefficients represent the estimated change in the outcome measure (or multiplier for WMHV) for a unit decline in z-score. All models were adjusted for sex, age
at scan/visit and nurse visit, body size (weight and height at nurse visit), sociodemographic factors (adult SEP and education level), and sociodemographic,
behavioural and health risk factors (physical activity and vascular risk score at nurse visit), plus a binary indicator of cognitive or neurological impairment at 69-71.
Models for brain measures additionally controlled for TIV; models for cognitive measures additionally controlled for childhood cognitive ability; and models for
WMHV at 53 were additionally adjusted for weight squared. Values given to 2 d.p.

Fig. 2 Associations between grip strength from midlife and brain health and cognitive measures at age 69–71. Estimated change (95 % CI) in
each of the brain health and cognitive outcomes at age 69–71 for a one z-score increase in levels or declines in maximum grip strength from
age 53 to 69 (A-D) or for membership of the low or high grip strength trajectory groups (compared to reference individuals) (E-H), derived from
fully adjusted linear regression models or GLMs
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(Supplementary Data Sec. 1.3). The groups can be inter-
preted as a consistent below-average trend (n = 733;
23.8 %), above-average trend (n = 283; 9.2 %), and an
average trend (n = 2062; 67.0 %; reference category).
Compared to the whole NSHD sample, a slightly lower
proportion of the Insight 46 participants were classified
with a low trend (21.1 %; n = 94), and a higher propor-
tion classified with a high trend (13.9 %; n = 62), with a
similar proportion of reference individuals (65.0 %; n =
290). The trajectories and assignments for these individ-
uals are presented in Fig. 1B. The analysis of the rela-
tionship with each of the neuroimaging and cognitive
outcomes included 428 participants with complete data
on covariates at age 53.
The relationship between grip strength trajectory

group and outcomes was largely consistent with earlier
results (Table 3; Fig. 2E-H). In particular, there was rea-
sonably strong evidence that below-average group mem-
bership was associated with an estimated 13.38cm3

lower WBV at age 69–71 (95 % CI=(-24.12, -2.64)) com-
pared to reference group individuals, adjusting for sex,
body size, TIV, sociodemographics, and behavioural and
health risk factors (Fig. 2E). In addition, there was some
evidence of a complementary trend where women in the
above-average group had higher whole-brain volume at
69–71, estimated at 18.30cm3 (95 % CI=(1.34, 35.26);
n = 34 high group female participants) compared to the
reference group, after adjusting for all covariates, al-
though a similar association was not seen in men (inter-
action p = 0.08).
In line with earlier results, consistently below-average

grip strength was also associated with lower non-verbal
reasoning: an estimated 0.33 lower matrix reasoning
score compared to the reference group (BCa boot-
strapped 95 % CI=(-0.58, -0.13); Fig. 2H). However, there
was no statistical evidence for a positive effect of above-

average grip strength on nonverbal reasoning, nor was
there any evidence of any association or trends between
PACC score or WMHV and the below- or above-
average trajectory groups (Fig. 2F-G). Models relating a
unit increase (from 0 to 1) in posterior probability of
low or high group membership to the outcomes identi-
fied similar trends (Table S3).

Discussion
In a 446 participant sub-sample from the British 1946
birth cohort, we found converging evidence that below-
average grip strength from age 53 was modestly
associated with lower whole-brain volume (WBV) at age
69–71. Conversely, above-average grip strength was as-
sociated with higher WBV, which was more pronounced
in females. For white matter hyperintensity volume
(WMHV) the findings were less consistent. Lower grip
strength from age 53 was associated with lower WMHV
but above-average declines in grip strength were associ-
ated with increased WMHV. Lastly, lower grip strength
was consistently associated with lower nonverbal
(matrix) reasoning scores, a measure of fluid cognition.
All results were independent of body size, physical activ-
ity, and sociodemographic, vascular and health risk fac-
tors, plus head size (neuroimaging measures) or
childhood cognition (cognitive measures).
Consistent with our findings, previous studies have

generally found that higher levels of objective physical
function measures, including grip strength, are cross-
sectionally associated with higher WBV [20, 47], and
fluid reasoning ability [13, 48]. Consistently above-
average grip strength was also associated with higher
WBV in women, which may reflect sex differences in the
rate of age-related cortical atrophy [49], though given
that maximum grip strength at age 60–64 and 69 was
positively associated with WBV independently of sex, it

Table 3 Associations between grip strength trajectory group membership and brain health and cognitive measures at 69–71

Group membership (vs reference, n = 275)

Low (n = 93) High (n = 60)

Brain health measures

WBV (cm3) -13.38* (-24.12, -2.64) M: -3.65 (-21.92, 14.62)

F: 18.30* (1.34, 35.29)

Global WMHV (mL) 0.86 (0.67, 1.11) 1.07 (0.80, 1.44)

Cognitive measures

PACC (z-score) -0.06 (-0.20, 0.09) -0.01 (-0.18, 0.16)

Matrix reasoning (z-score)‡ -0.33† (-0.58, -0.13) -0.08 (-0.34, 0.14)

*p < 0.05
† BCa bootstrap 95% CI does not contain 0
‡ 95% CIs obtained from BCa bootstrap with 2,000 replicates
Coefficients (95 % CIs) are derived from multivariable linear regression models or GLMs and give the estimated mean difference between the low or high group
versus the reference group for WBV and the multiplicative difference between low or high group versus the reference group for WMHV. All models included 428
participants with complete baseline covariates (age 53), and were adjusted for sex, age at scan/visit, height, weight, physical activity, and vascular risk score at age
53, adult SEP, education, and a binary indicator of cognitive or neurological impairment at age 69–71. Additional adjustments were for weight squared (WMHV),
TIV (brain measures), and childhood cognitive ability (cognitive measures). Values given to 2 d.p.
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may be that this effect was more pronounced in women
in this sample by chance (see also Supplementary Data
Sec. 2.1).
Higher grip strength was weakly associated with in-

creases in global WMHV, which is at odds with previous
work [21]. That said, there was no evidence that individ-
uals with below- or above-average grip strength from
midlife differed in WMHV compared to those with aver-
age trajectories; nor any evidence of a positive associ-
ation between grip strength at age 69 and WMHV.
However, above-average decline in grip strength was
weakly associated with higher WMHV, which is consist-
ent with studies reporting longitudinal associations be-
tween declines in other physical function measures (e.g.,
gait speed, chair rises) and increased WMHV [50–52].
Studies are needed in other cohorts across a range of
ages to examine this discrepancy.
Maximum grip strength is positively associated with

primary motor cortex volumes and cerebellar volume in
older adults [53]. Given that changes in cerebellar
morphology are associated with age-related motor and
cognitive decline [54], differences in WBV may reflect
structural changes in regions involved in motor control
and coordination [55]. Such changes may result from
broader alterations, for example to neuromodulation
[56], which may in turn be associated with cellular (e.g.,
inflammatory) pathways common to both physical and
cognitive decline [57]. More work is needed to charac-
terise these pathways and associated biomarkers, in
particular to understand age and sex differences in the
effect of risk factors on grip strength declines [58] and
how this may relate to brain structure and cognitive
ageing.
Furthermore, while we lack the baseline imaging met-

rics to confirm this, lower WBV and higher WMHV
may indicate an increased rate of brain atrophy and ac-
celerated white matter lesion accumulation, respectively,
given that both occur in healthy ageing [15]. Increased
global WMHV and whole-brain atrophy are known
markers of cerebral small vessel disease [14, 59], which
in turn is predictive of dementia, stroke, and mortality
[18]. Future work should monitor the cohort to assess
the extent to which associations between indicators of
physical function and markers of brain health relate to
clinical outcomes such as stroke and dementia.
This study has several strengths, including the large

sample of narrow age range, and measures of grip
strength up to 17 year prior to cognitive tests and sensi-
tive neuroimaging metrics. We were also able to control
for numerous life-course covariates in all models, and
analyses with cognitive outcomes additionally adjusted
for childhood cognition, which is notable since child-
hood cognitive ability is highly predictive of scores de-
cades later [32]. In addition, we used a statistical model

to identify groups of individuals with similar grip
strength trajectories, rather than the subjective methods
that have been used previously to classify objective phys-
ical function in this cohort [42, 60].
There are also several limitations to the present work.

Firstly, though the NSHD is representative of the
British-born population at the time, it is ethnically
homogeneous. Secondly, the Insight 46 subsample have
a higher SEP, are more educated, active, and generally
healthier than the main NSHD sample. This may mean
associations in the subsample are underestimates [24].
Though we were able to partially account for this by fit-
ting the GBTM on the whole NSHD sample (n = 3078),
this method has associated limitations (Supplementary
Data Sec. 1.4), and should be considered a tool to de-
scribe patterns of trends rather than a means to identify
distinct developmental trajectories [44]. Lastly, while we
were able to adjust for self-reported physical activity in
all models, this measure is unlikely to completely cap-
ture variation in cardiorespiratory fitness.

Conclusions
Taken together, we have shown in a sample of individ-
uals from a British birth cohort that below- or above-
average trends in maximum grip strength from midlife
are relatively consistent predictors of later-life whole-
brain volumes and nonverbal reasoning, and that above-
average decline in grip strength may also modestly
predict increased global white-matter hyperintensity vol-
umes. These results provide preliminary evidence for the
potential utility of grip strength in monitoring cognitive
and neurological function, as suggested by several recent
reviews [4–6]. Given that tests of grip strength are quick,
non-invasive, and relatively inexpensive, one could envi-
sion their future use in primary care, in combination
with normative population measures [61], to provide in-
sights into brain structure [6], and to help assess the
risks of associated clinical manifestations such as stroke
and dementia [20]. We suggest that current and future
longitudinal cohort studies include measures of objective
physical function from an earlier age, to better under-
stand their temporal dynamics in younger cohorts, to as-
sess whether there exist groups of individuals following
distinct developmental trajectories, and to investigate to
what extent such trajectories relate to structural and
functional changes in the brain.
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