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Abstract

Objective: Vitamin D deficiency is common among older adults and has been linked to muscle weakness. Vitamin D
supplementation has been proposed as a strategy to improve muscle function in older adults. The aim of this study
was to investigate the effect of calcifediol (25-hydroxycholecalciferol) on whole genome gene expression in skeletal
muscle of vitamin D deficient frail older adults.

Methods: A double-blind placebo-controlled trial was conducted in vitamin D deficient frail older adults (aged above
65), characterized by blood 25-hydroxycholecalciferol concentrations between 20 and 50 nmol/L. Subjects were
randomized across the placebo group and the calcifediol group (10 pg per day). Muscle biopsies were obtained before
and after 6 months of calcifediol (n = 10) or placebo (n = 12) supplementation and subjected to whole genome gene
expression profiling using Affymetrix HuGene 2.1ST arrays.

Results: Expression of the vitamin D receptor gene was virtually undetectable in human skeletal muscle
biopsies, with Ct values exceeding 30. Blood 25-hydroxycholecalciferol levels were significantly higher after
calcifediol supplementation (87.3 +20.6 nmol/L) than after placebo (43.8 + 14.1 nmol/L). No significant
difference between treatment groups was observed on strength outcomes. The whole transcriptome effects
of calcifediol and placebo were very weak, as indicated by the fact that correcting for multiple testing using
false discovery rate did not yield any differentially expressed genes using any reasonable cut-offs (all g-values
~1). P-values were uniformly distributed across all genes, suggesting that low p-values are likely to be false
positives. Partial least squares-discriminant analysis and principle component analysis was unable to separate
treatment groups.

Conclusion: Calcifediol supplementation did not significantly affect the skeletal muscle transcriptome in frail
older adults. Our findings indicate that vitamin D supplementation has no effects on skeletal muscle gene expression,
suggesting that skeletal muscle may not be a direct target of vitamin D in older adults.

Trial registration: This study was registered at clinicaltrials.gov as NCT02349282 on January 28, 2015.
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Background

Muscle weakness and muscle loss increase with age,
potentially leading to increased risk of falls, frailty
and loss of independence among older adults [1].
One of the factors that may influence muscle health
is vitamin D. Vitamin D is partly obtained from the
diet and is produced endogenously in the skin via a
photochemical reaction. Vitamin D is mainly known
for its role in bone health by promoting the absorp-
tion of calcium in the intestine and the retention of
calcium in the kidneys. Many older adults are defi-
cient or insufficient in vitamin D [2, 3]. In a recent
study in 4495 European individuals aged > 65 years,
vitamin D deficiency (serum 25-hydroxyvitamin D
25-50nmol/L) and vitamin D insufficiency (50-75
nmol/L) were found in 41 and 33% of the population,
respectively [3]. Various observational studies have
found associations between vitamin D deficiency and
impaired muscle function and/or physical perform-
ance in older adults [4-8]. As a consequence, vitamin
D supplementation has been proposed as a strategy
to improve muscle function [9].

Vitamin D is suspected to affect muscle health via
both indirect and direct mechanisms. Indirectly vitamin
D can influence muscle function via its role in calcium
and phosphate homeostasis [10, 11]. Vitamin D has also
been proposed as a direct modulator of skeletal muscle
signalling via activation of the vitamin D receptor
(VDR). Several cell culture studies have suggested a role
of VDR signalling in skeletal muscle function [12-15].
In addition, inactivation of the VDR in mice leads to im-
paired muscle development and differential expression
of key myogenic regulators [16]. Conversely, calcitriol
(1,25-dihydroxyvitamin D3) was found to inhibit myo-
blast proliferation and differentiation in primary myo-
cytes isolated from human skeletal muscle [17].

While in vitro and animal studies thus support a
role for VDR in gene regulation in muscle cells [18],
more recently the function of VDR in skeletal muscle
has come into question [19]. Wang and colleagues
showed that most of the antibodies directed against
VDR lacked specificity, potentially leading to false
positives [20]. Intriguingly, despite the fact that VDR
was present and functional in myocytes isolated from
human skeletal muscle and C2C12 myotubes, Olsson
and colleagues were unable to detect appreciable
levels of VDR in mature human skeletal muscle [17].
Here we aimed to determine the overall impact of
vitamin D on skeletal muscle gene regulation in vivo
in humans and identify potential VDR target genes in
human skeletal muscle. To that end, we conducted a
transcriptomics analysis on muscle biopsies obtained
from frail older adults participating in a randomized,
placebo-controlled double blind trial investigating the
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effect of calcifediol (25-hydroxycholecalciferol or
25(OH)D) supplementation on muscle function [21].

Methods

Study Design & Population

This study is part of a larger clinical trial that studied
the effect of calcifediol (25-hydroxyvitamin D3 or
25(OH)D3) and cholecalciferol (vitamin Ds) on muscle
strength. Procedures for this study have been described
elsewhere [21]. This study used a randomized, parallel-
arm double blind design. All subjects had a serum
25-hydroxycholecalciferol concentration between 20
and 50nmol/L. A serum 25-hydroxycholecalciferol
concentration of 50 nmol/l (20 ng/ml) is often used as
a threshold for vitamin D deficiency and for vitamin
D supplementation [22]. Subjects in the -calcifediol
arm received 10 pg (400 IU) 25-hydroxycholecalciferol
per day (DSM Nutritional Products Ltd.). Subjects
were instructed to take their capsules in the morning
during breakfast. Treatment compliance was reported
at 3 and 6 months by capsule count of returned cap-
sules, taking into account the number of days active
in the study. Participants were considered compliant
when >80% of the study supplements were taken.
Overall compliance to treatment was =80% in all par-
ticipants, with an average compliance of 98%. Partici-
pants were frail and pre-frail older adults (65+) with
serum levels of 25-hydroxyvitamin D3 between 20
and 50 nmol/L. Frailty was assessed using the Fried
criteria [23]. Power analysis for the larger clinical trial
was performed using knee-extension strength as a pri-
mary outcome measure [21]. A subset of samples was
taken from the main study based on how much
muscle was available for transcriptomics analysis (12
subjects in the placebo arm and 10 subjects in the
calcifediol arm). No power analysis was performed to
determine the number of subjects needed for the
transcriptomics analysis. The study was approved by
the Medical Ethics Committee of Wageningen Univer-
sity. All participants gave their written informed con-
sent. The study was registered at clinicaltrials.gov as
NCT02349282.

Strength measurements

Isometric leg muscle strength (leg extension and leg flexion)
was assessed using a Biodex System 4 dynamometer (Biodex
Medical Systems, Shirley, NY, USA). Subjects were seated
upright with their chest and waist secured by belts. Experi-
ments were performed with knee angle of 60° and hip angle
of 90°. Subjects performed 3 maximal voluntary isometric
contractions for five seconds, with 30 s of rest between trials
and five minutes of rest between knee-extension and
knee-flexion trials. Researchers provided standardized verbal
encouragement during the strength tests.
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Blood samples

Blood samples were collected in a fasting state in the
morning and stored at —80°C until analysis. Serum
25(0OH)D3 (nmol/L) and 24,25(0OH,)D5; (nmol/L) were
analyzed using LC/MS/MS (Analytical Research Center,
DSM Nutritional Products, Kaiseraugst, Switzerland) as
previously described [21, 24].

Muscle biopsies

Muscle biopsies were collected at baseline and after 6
months of supplementation. The last dose of supplement
was taken the preceding day. Subjects were in the fasted
state when the biopsy was taken. Muscle biopsies were
taken from the middle region of the vastus lateralis
muscle under local anaesthesia, ~ 15cm above the pa-
tella and ~ 3 cm below entry through the fascia, using
the percutaneous needle biopsy technique [25]. Muscle
samples were dissected carefully and freed from any vis-
ible non-muscle material and were immediately frozen
in liquid nitrogen. Subsequently, muscle samples were
stored at — 80 °C until further analysis.

Microarray analysis and qPCR

RNA was isolated (RNeasy Micro kit, Qiagen, Venlo, the
Netherlands), quantified (Nanodrop ND 1000, Nanodrop
technologies, Wilmington, DE, USA) and integrity was
checked by an Agilent 2100 Bioanalyser with RNA 6000
microchips (Agilent Technologies, South Queensferry,
UK). Total RNA was labelled using the GeneChip® WT
plus Reagent Kit and hybridized to GeneChip® Human
Gene 2.1 ST Array (Affymetrix, Inc. Santa Clara, CA,
USA). Sample labelling, hybridization to chips, and image
scanning were performed according to the manufacturers’
instructions.

We performed qPCR on the VDR gene using gene-
specific primers (forward: GTGGACATCGGCATGAT-
GAAG, reverse: GGTCGTAGGTCTTATGGTGGG).
500 ng RNA was reverse transcribed to cDNA using a
iScript ¢cDNA synthesis kit (Bio-Rad Laboratories,
Veenendaal, Netherlands). Real-time PCR was per-
formed using SensiMix (Bioline, GC biotech, Alphen
aan den Rijn, Netherlands) on a CFX384 Real-Time
PCR detection system (Bio-Rad Laboratories, Veenen-
daal, Netherlands).

Data analysis

All data analysis was done in R [26]. Changes in muscle
strength and vitamin D levels were evaluated using linear
mixed models using the Ime4 library [27]. Microarray data
were assessed for quality using the MADMAX pipeline
and additionally by visually inspecting the probe level re-
siduals and NUSE (Normalized Unscaled Standard Error)
plots [28]. Data was normalized using Robust Multichip
Average (RMA) [29]. Gene level summarization was
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performed using version 22 of the Custom CDF from the
Brainarray project [30]. Genes were filtered using Univer-
sal ExPression Codes (UPC) filtering with a 50% expres-
sion likelihood cut-off in at least 10 samples, the smallest
subset within this dataset [31].

Univariate statistical analysis of gene expression was
performed using the limma R library [32]. Contrasts were
set for time effect in both placebo and calcifediol groups
and an interaction term for the calcifediol group versus
the placebo group. P-values were calculated using Inten-
sity Based Moderated t-tests [33]. Genes with a p-value
below 0.05 and an absolute fold change above 1.2 were
considered statistically significant. Gene ontology was per-
formed using EnrichR [34]. Pathway and upstream regula-
tor analysis was performed using Ingenuity Pathway
Analysis (Qiagen, The Netherlands). Partial least squares
discriminant analysis (PLS-DA) was performed using the
caret and pls libraries [35]. PLS-DA model was validated
using 5 x 5-fold repeated cross-validation. Model perform-
ance was evaluated using area under ROC curve
(AUROC). Receiver Operator Characteristic (ROC) curve
and heatmaps were made using ROCR and ComplexHeat-
map libraries, respectively [36, 37].

Results

Vitamin D status and muscle strength

Calcifediol supplementation led to significant increases
in total 25(OH)D3 and 24,25(0OH,)D3 levels compared to
placebo (Table 1). At the end of the study, subjects in
the placebo group were on average still below the defi-
ciency cut-off used for this study (50 nmol/L), whereas
the calcifediol group was not. No differences were ob-
served in muscle strength outcomes (BioDex leg exten-
sion and flexion peak torque, Table 1). A full discussion
of physiological outcomes of calcifediol supplementation
can be found elsewhere [21].

Effect of Calcifediol on muscle transcriptome
The muscle biopsies were used for qPCR analysis and
transcriptomics. The Ct values for qPCR amplification of
VDR in the muscle biopsies were above 30 (Fig. 1), sug-
gesting that VDR is expressed at very low levels in hu-
man skeletal muscle. Microarray analysis confirmed the
very low VDR mRNA expression in the human muscle
biopsies, with a median raw intensity of 12.
Transcriptomics showed minimal effects of calcifediol
supplementation and placebo on the skeletal muscle
transcriptome. Volcano plot analysis indicated that only
a single gene was significantly altered by more than
2-fold in either the calcifediol or placebo group (P <
0.001). Figure 2). Volcano plot analysis also indicated
that the overall magnitude of gene expression changes
were very similar between the calcifediol and placebo
group. Only very few genes in the calcifediol group (14
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Table 1 Subject characteristics and main effect of calcifediol supplementation

Placebo - Pre

Placebo - Post 25(OH)D - Pre 25(0OH)D - Post

N 12

Gender (M / F) 6/6

Age (years) 741458
BMI (kg/m?) 272+40
Weight (kg) 762+ 140
Body Fat (%) 321+69
Total 25(OH)Ds (nmol / L) 375+119
24,25(0H,)Ds (nmol / L) 19+08
BioDex Leg Extension Peak Torque (Nm) 129.7 £489
BioDex Leg Flexion Peak Torque (Nm) 570+299

10
6/4
71857
280+40
80.7 £ 14.9
313£66 325+738 324+738
438 £ 14.1 341+£93 87.3 + 206
2715 1807 80+37
1336 = 64.1 1459+503 157.2 £ 56.1
552 + 350 648 +22.5 700 £ 23.6

Values are means + SDs

genes) and placebo group (20 genes) met the significance
level of IBMT-based P-value< 0.001. Using a more leni-
ent P-value cut-off of 0.01, 278 genes were differen-
tially regulated in the placebo group and 174 genes in
the calcifediol group, with an overlap of 6 genes. Un-
adjusted P-values were uniformly distributed in both
treatment groups and for the interaction between
group and time (Fig. 3 a, b, c). Accordingly, genes
with a low P-value are likely to be false positives.
Correcting for multiple testing using false discovery
rate led to no differentially expressed genes using any
sensible cut-offs (all q-values ~1). Using PLS-DA we
attempted to separate the transcriptomic response to
calcifediol supplementation from the response in the
placebo group. This approach did not reveal any con-
sistent patterns in the data (AUROC < 0.5 during 5 x
5-fold repeated cross-validation, Fig. 3d; accuracy of
0.46, Kappa of - 0.12). Multilevel principle component
analysis indicated that the samples from the four
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Fig. 1 Very low expression of VDR in human skeletal muscle. gPCR
Amplification curves of VDR in muscle biopsies. cODNA obtained from
human muscle biopsies was PCR amplified using primers against
human VDR. The different lines represent different subjects

different groups were uniformly distributed, showing
no clear clustering (Fig. 4).

Genes previously described as putative target genes
for the vitamin D receptor [38—40] did not show dif-
ferential expression, with the exception of the
insulin-like growth factor 1 receptor (IGFIR, P < 0.05,
fold change of -1.27 for the interaction effect be-
tween time and treatment; Fig. 5).

Finally, the effects of calcifediol and placebo on specific
pathways was investigated. Gene set enrichment analysis
yielded 7 significant positively enriched (false discovery
rate / FDR g-value < 0.05) genesets in the calcifediol group
and 10 significant positively enriched genesets in the pla-
cebo group, with 3 overlapping genesets (Fig. 6). The three
overlapping genesets were all related to collagen fibrils.
These data indicate a time effect on the collagen pathway,
which is independent of the type of treatment. Gene set
enrichment analysis did not yield any negatively enriched
genesets (FDR g-value < 0.05).

Placebo Calcifediol

log2(fold-change) log2(fold-change)

Fig. 2 Minimal effect of calcifediol and placebo on skeletal muscle
gene expression in vitamin D deficient frail older adults. Volcano
plot showing the relation between signal log ratio (log2[fold-
change], x-axis) and the -log10 of the IBMT P-value (y-axis) for the
effect of calcifediol and placebo on the skeletal muscle
transcriptome. The dotted lines show the threshold for fold-change
of 2, and P-value of 0.001
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Fig. 3 Minimal effect of calcifediol and placebo on skeletal muscle gene expression in vitamin D deficient frail older adults. Top left (a): P-values for
the change in gene expression for all genes after filtering; before and after calcifediol supplementation. Uniform distribution (i.e. no increased
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the placebo group. Bottom left (c): P-values for the interaction effect (change in the calcifediol group vs. change in placebo group). Bottom right (d):
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Discussion

This study was initiated on the basis of the assumption
that vitamin D supplementation would be able to elicit
changes in gene expression in skeletal muscle of vitamin
D deficient pre-frail older adults. Contrary to our ex-
pectation, the effect of vitamin D on the muscle tran-
scriptome was very weak to non-existent. Although
supplementation with calcifediol led to a significant in-
crease in vitamin D status as determined by total
25(OH)D levels (34.1 +9.3 to 87.3 +20.6, p <0.001), we
were unable to confidently identify genes that were af-
fected by calcifediol supplementation. Neither a univari-
ate technique (Limma) nor a multivariate technique
(PLS-DA) led to the identification of a robust signature
of vitamin D supplementation in skeletal muscle. This is
also in accordance with the lack of effect on muscle
function [41].

Using a very lenient cut-off we found 174 genes differen-
tially regulated in the calcifediol supplemented arm. How-
ever, the same cut-off yielded 278 differentially regulated
genes in the placebo group. Interaction contrast for time x
treatment led to identification of 190 genes. Given the flat
p-value distributions, it is difficult to attribute these differ-
entially expressed genes to vitamin D supplementation
without risking an unacceptable number of false positives.

Known VDR target genes were not significantly affected
by calcifediol treatment. Many VDR targets were identi-
fied in immune cells, particularly via microarray studies
using immune cells [39]. Chromatin immunoprecipitation
sequencing (ChIP-seq) data suggests that the target genes
for VDR can vary greatly depending on the cell type [42].
To our knowledge, no ChIP-seq analysis has been carried
out on skeletal muscle cells. Other genes were selected
based on a recent paper by Hassan-Smith and colleagues
[40], in which muscle gene expression was correlated with
circulating levels of 1,25(OH,)D5; and 25(OH)D. Correla-
tions were statistically significant but nevertheless gener-
ally weak (~ 0.3-0.5).

There are several possible explanations as to why vita-
min D supplementation failed to alter gene expression in
our study. Importantly, there is still major discussion on
whether VDR is actually expressed in human skeletal
muscle. Reports of VDR expression in skeletal muscle go
back several decades [43, 44]. However, more recently it
was revealed that antibodies against VDR may not be
sufficiently specific, leading to overestimation of VDR
protein levels in skeletal muscle [20]. A later study de-
tected VDR protein expression in mouse skeletal muscle
using the same VDR D6 antibody but using a different
western blotting protocol [38]. In this study,
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Fig. 5 Lack of effect of calcifediol supplementation on expression of

putative VDR-dependent genes. Heatmap of gene expression
changes (signal log ratio, SLR) of putative genomic targets of VDR

1,25(0OH),D3 also caused a dose-dependent induction of
the VDR target gene CYP24A1l in C2C12 and primary
myotubes. In our study, we did not observe any change
in cytochrome P450 family 24 subfamily A member 1
(CYP24A1) expression upon calcifediol supplementation.
Ceglia et al. also observed VDR in human skeletal
muscle, again with the same highly specific VDR D6
antibody, and observed that VDR is primarily expressed
in myonuclei [45]. Olsson and colleagues observed that
whereas human muscle precursor cells and cultured
myotubes express ample amounts of VDR, mature hu-
man skeletal muscle does not [17].

The results of Olson and colleagues are in line with our
observations. The exclusive presence of VDR in proliferat-
ing satellite cells might indicate that VDR is only important
in muscle at the developmental stage or after muscle tissue
injury. During muscle injury, the normally quiescent satel-
lite cells are activated and turn into proliferating muscle
precursor cells. Hence, it is conceivable that in adults vita-
min D supplementation may only affect gene expression
after muscle injury. The potential role of vitamin D in
muscle injury response suggests that vitamin D may have a
role in the adaptive response to exercise training.

Another possibility is that the participants in this study
were not sufficiently deficient to observe an effect. We did
not include individuals with a vitamin D status below 20
nmol/L due to ethical concerns. It is conceivable that very
severe deficiency has a much stronger impact on muscle
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Fig. 6 Partially overlapping effect of calcifediol and placebo on
muscle transcriptome at the pathway level. Gene set enrichment
analysis was performed separately for the effect of calcifediol
treatment and placebo treatment. Venn diagram showing overlap in
upregulated gene sets (FDR g-value< 0.05) by placebo and
calcifediol. The overlapping gene sets are: WP2798 ASSEMBLY.
OF.COLLAGEN.FIBRILS.AND.OTHER MULTIMERIC.STRUCTURES,
COLLAGEN. FORMATION, and

ASSEMBLY.OF COLLAGEN FIBRILS.AND.OTHER MULTIMERIC.
STRUCTURES

function, thus leading to a bigger observable effect. How-
ever, severe deficiency might also lead to alterations in cal-
cium and phosphate metabolism, each of which can affect
muscle function [46, 47].

Our study has limitations. First of all, subjects were
supplemented with calcifediol for 6 months. It can be
hypothesized that the effects of calcifediol on skeletal
muscle gene expression may be more pronounced
after short term supplementation. It is possible that
long term supplementation leads to a new steady
state. Second, only a subset of subjects in the calcife-
diol trial were used for the transcriptomics analysis.
However, there are no indications that our study was
underpowered, or that a specific bias was introduced
between the placebo and calcifediol groups. Finally,
we cannot rule out that the lack of discernible effect
of calcifediol on skeletal muscle gene expression is
due to a low signal to noise ratio, although we con-
sider this explanation unlikely.

Conclusion

Calcifediol supplementation did not significantly influence
the skeletal muscle transcriptome among frail older adults
in this randomized, double-blind placebo-controlled clin-
ical trial. Our findings indicate that the effects of vitamin
D supplementation on the skeletal muscle transcriptome
may be either absent, weak, or limited to a subset of
muscle cells.
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Abbreviations

1,25(0H2)D3: Calcitriol; 1,25-dihidroxyvitamin D; 24,25(0H2)D3: 24,25-
dihidroxyvitamin D; 25(0OH)D3: Calcifediol; 25-hydroxyvitamin D; AUROC: Area
Under Receiver Operator Characteristic; ChlP-seq: Chromatin
Immunoprecipitation sequencing; CYP24A1: Cytochrome P450 family 24
subfamily A member 1; FDR: False Discovery Rate; IGF1R: Insulin-like Growth
Factor 1; NUSE: Normalized Unscaled Standard Error; PLS-DA: Partial Least
Squares Discriminant Analysis; RMA: Robust Multiarray Average;

ROC: Receiver Operator Characteristic; UPC: Universal ExPression Codes;

VDR: Vitamin D Receptor
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