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Abstract 

Background  The aging process induces neural and morphological changes in the human musculoskeletal system, 
leading to a decline in muscle mass, strength and quality. These alterations, coupled with shifts in muscle metabo-
lism, underscore the essential role of physical exercise in maintaining and improving muscle quality in older adults. 
Muscle quality’s morphological domain encompasses direct assessments of muscle microscopic and macroscopic 
aspects of muscle architecture and composition. Various tools exist to estimate muscle quality, each with specific 
technical requirements. However, due to the heterogeneity in both the studied population and study methodologies, 
there is a gap in the establishment of reference standards to determine which are the non-invasive and direct tools 
to assess muscle quality after exercise interventions. Therefore, the purpose of this review is to obtain an overview 
of the non-invasive tools used to measure muscle quality directly after exercise interventions in healthy older adults, 
as well as to assess the effects of exercise on muscle quality.

Main text  To address the imperative of understanding and optimizing muscle quality in aging individuals, this review 
provides an overview of non-invasive tools employed to measure muscle quality directly after exercise interventions 
in healthy older adults, along with an assessment of the effects of exercise on muscle quality.

Results  Thirty four studies were included. Several methods of direct muscle quality assessment were identified. 
Notably, 2 studies harnessed CT, 20 utilized US, 9 employed MRI, 2 opted for TMG, 2 adopted myotonometry, and 1 
incorporated BIA, with several studies employing multiple tests. Exploring interventions, 26 studies focus on resist-
ance exercise, 4 on aerobic training, and 5 on concurrent training.

Conclusions  There is significant diversity in the methods of direct assessment of muscle quality, mainly using 
ultrasound and magnetic resonance imaging; and a consistent positive trend in exercise interventions, indicating 
their efficacy in improving or preserving muscle quality. However, the lack of standardized assessment criteria poses 
a challenge given the diversity within the studied population and variations in methodologies.. These data emphasize 
the need to standardize assessment criteria and underscore the potential benefits of exercise interventions aimed 
at optimizing muscle quality.
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Introduction
The aging process generates neural [1] and morphologi-
cal [2] changes in the human musculoskeletal system 
triggering a reduction in muscular parameters [3•]. Given 
the increase in life expectancy [4], it is imperative to pro-
mote active and healthy aging that improves the quality 
of life of older adults [5, 6]. Muscle quality is an impor-
tant indicator of the overall health status of older adults 
[3, 7•]. The decline in muscle quantity and quality with 
age is a normal process that affects everyone [8, 9], which 
can lead to frailty, dependence, decreased quality of life 
and increased mortality [10, 11, 12•].

Maintaining and controlling muscle quality is of vital 
importance in the older adult, as it can help prevent the 
decline in muscle mass, strength and regenerative capac-
ity, as well as slowing or preventing alterations in mus-
cle metabolism [13]. Physical exercise interventions have 
been shown to be an effective means of prolonging aver-
age life expectancy [14, 15], as well as preventing and 
delaying the deterioration and loss of muscle quality 
inherent to aging [13, 14]. Research has shown that physi-
cal exercise not only enhances muscle quality [16, 17••,••] 
and function [18] but also improves functional fitness 
and metabolic health [12, 19•]. Additionally, it contrib-
utes to the stability and integrity of the cell membrane 
[20, 21, 22], which are key markers currently indicative of 
muscle quality. This scenario indicates that physical exer-
cise plays a crucial role in mitigating the decline of mus-
cle regeneration, boosting the number and activation of 
satellite cells, increasing myogenic potential, and reduc-
ing fibrosis formation. Furthermore, exercise effectively 
reduces the accumulation of age-related intermuscular 
fat and influences the composition of intramyocellular 
lipids [13]. Among exercise strategies, strength training, 
in its various forms, has proven to be a powerful tool to 
combat age-associated muscle decline [17, 23]. Firstly, 
moderate- to high-repetition strength training followed 
by high- and moderate-intensity aerobic exercise is a 
potential strategy to reverse the molecular features of 
skeletal muscle aging [24•], with power training being a 
preferred exercise modality in clinical populations [25]. 
Additionally, various strategies are explored, ranging 
from traditional strength training [23] to low-volume 
HIIT [26], as well as resistance methods such as plyomet-
rics [27]. Equally important is recognizing the vital role 
of dietary interventions in promoting muscle health [28].

However, it is important to monitor, through sys-
tematic assessment, changes in muscle tissue after a 
physical exercise intervention in order to evaluate its 
effectiveness [29]. The European Working Group on 
Sarcopenia in Older People (EWGSOP) emphasizes the 
importance of assessing not only the quantity of muscle, 
but also its quality [30••]. Muscle quality is characterized 

by functional and morphological domains; the first one 
aligns with indirect measurements of muscle function 
relative to mass, while the second involves direct assess-
ments of muscle architecture referring to the microscopic 
and macroscopic aspects of muscle architecture and 
composition [31•]. Despite the lack of a precise defini-
tion of muscle quality, it’s crucial to analyze its construct 
and its relation to physical performance and muscle func-
tion [32•]. Our focus will be on analysing muscle quality 
through direct techniques that measure muscle architec-
ture and composition.

Currently, there are several non-invasive techniques for 
monitoring muscle quality, but our focus will be on direct 
techniques measuring muscle architecture and composi-
tion [33–35]. These techniques are relatively easy to per-
form, do not require the insertion of invasive devices, 
and are an important tool for evaluating the effectiveness 
of physical exercise interventions in older adults [36].

Radiological imaging techniques allow the investigation 
of degenerative processes in individual muscle groups. 
These techniques can identify and quantify abnormali-
ties, monitor patient progress and evaluate therapeutic 
interventions. Magnetic resonance imaging (MRI) and 
X-ray computed tomography (CT) stand as the current 
state-of-the-art in muscle quality assessment research 
[37–39]. CT, considered the gold standard for body com-
position analysis, excels in assessing muscle mass and 
quality, and diagnosing abnormal body composition phe-
notypes [40]. Notably, it offers exceptional visualization 
of intermuscular and intramuscular fat in tomographic 
sections [41]. Whereas, the development of new MRI 
sequences and tools has further increased the accuracy 
allowing for simultaneous assessment of body composi-
tion and identification of muscle quality issues such as 
disruption, edema, myosteatosis, and myofibrosis with 
the latter two tending to increase within muscles during 
aging [37, 42, 43]. In contrast, Dual-energy X-ray absorp-
tiometry (DXA) is recommended as a reference in most 
EWGSOP guidelines to diagnose sarcopenia in clinical 
practice [30, 44••]. DXA provides a body composition 
model that includes fat, bone mineral density, and lean 
mass [45, 46], but even though it is a reference method 
for measuring total skeletal muscle mass, it cannot evalu-
ate an individual muscle or assess muscle quality [7, 47].

In addition, ultrasound sonography (US) is a fast, non-
invasive, and affordable imaging modality. The use of 
musculoskeletal ultrasound (MSK-US) for muscle quality 
assessment is rapidly gaining traction in clinical practice 
[40, 48]. A major advantage over other methods is that 
different muscle groups can be examined separately [49]. 
Common tissue characterization parameters measured 
include morphological measures of muscle thickness, 
pennation angle, cross-sectional area, echo intensity, and 
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fascicle length [50•], which have shown correlations with 
muscle mass and strength [51]. Perkisas et al. [50•] stand-
ardized the use of ultrasound to assess muscle quality. In 
recent years, several qualitative tools aimed at identifying 
muscle quality loss have been developed in various care 
settings [52, 53]. Recent meta-analyses [54] underline the 
comparable and superior performance of MRI and CT 
in quantifying age-related morphological changes, high-
lighting their robustness in assessing muscle quality. In 
contrast, ultrasound, does not show a comparable level of 
accuracy in capturing age-related morphological changes 
[54, 55].

Another current non-invasive method is tensiomyogra-
phy (TMG), a valuable tool for assessing neuromuscular 
function in older adults. The method is sensitive to mus-
cle composition, architecture, and pre-atrophic changes 
in skeletal muscles, and may be sensitive to changes in 
muscle quality in aging and diseased populations [56, 
57]. On the other hand, myotonometry is another tool 
that has been studied for the assessment of muscle vis-
coelastic properties [58]. Additionally, Bioelectrical 
Impedance Analysis (BIA) is a non-invasive, quick, and 
accessible technique that uses whole-body electrical con-
ductivity to estimate body composition [59]. Notably, the 
Phase Angle (PhA) derived from BIA, a measure of cellu-
lar integrity and body water distribution, has become an 
important parameter for muscle quality assessment [60]. 
In fact, the European Working Group on Sarcopenia in 
Older People (EWGSOP) incorporates BIA-derived PhA 
in their criteria for muscle quality assessment, highlight-
ing its potential for identifying sarcopenia [30••].

Thus, there is a need for a comprehensive review to 
compile and analyze the existing scientific evidence on 
the techniques mentioned in the evaluation of muscle 
architecture and composition in the field of promotion, 
intervention and design of physical exercise in the clinic 
of the older adult. Therefore, the aim of this systematic 
review is to obtain an overview of the non-invasive tools 
used to measure muscle quality directly after exercise 
interventions in healthy older adults. We aim to iden-
tify the different tools, measurement methods and their 
applicability in the direct assessment of muscle quality, 
providing a solid guide in the field of assessment and 
application of physical exercise interventions in older 
adults for future research in this area.

To achieve this goal, our research questions are as fol-
lows: (1) Which are the direct non-invasive tools used 
to measure muscle quality in older adults after exercise 
interventions?; (2) What are the effects of physical exer-
cise programs on muscle quality in older adults measured 
by non-invasive tools?; (3) Which multisource objec-
tive parameters are predominantly utilized in the state 
of the art, and what priority have they shown in papers 

to measure muscle quality in older adults after exercise 
intervention?; and (4) What recent trends or advance-
ments have been observed in the development of new 
non-invasive tools for quantifying muscle quality in older 
adults after exercise interventions?.

Methods
Registration
The systematic review was registered on the Open Sci-
ence Framework (OSF) platform (https://​osf.​io/​anjr4/?​
view_​only=​05969​c336a​08470​28766​e96f5​74eb6​3e), 
in October 24, 2023 (registration DOI: https://​doi.​
org/https://​doi.​org/​10.​17605/​OSF.​IO/​3GD6Y).

Procedures
The review was conducted following the Preferred 
Reporting Items for Systematic Reviews and Meta-Analy-
ses (PRISMA) 2020 guidelines [61].

Eligibility criteria
Original, peer-reviewed, full-text studies were included/
excluded using the PICOS method (participants, inter-
ventions, comparators, outcomes, and study design) [62]. 
The selection criteria are summarized in Table 1.

Literature search and screening process
Search strategy was developed by one reviewer (NV) spe-
cifically for PubMed (added below), and it was applied 
to the title, abstract, and keywords. This search strategy 
was later modified to align with the syntax and relevant 
subject headings of other databases. The literature search 
was performed in the electronic databases PubMed, 
Web of Science and Scopus, using the Boolean operators 
AND/OR, in combinations with the keywords (resistance 
OR strength* OR exercise* OR aerobic* OR multicompo-
nent) AND (aged OR old OR elder* OR aging OR frail* 
OR older OR senior OR geriatric) AND ("contraction 
time" OR "reaction time" OR "contraction sustain time" 
OR "relaxation time" OR "muscle tone" OR stiffness OR 
"echo intensity" OR "pennation angle" OR "fat infiltration" 
OR "muscle lipid" OR "muscle hydration" OR "muscle 
microscopic fat" OR "macroscopic fatty infiltration" OR 
radiodensity OR "skeletal muscle radiodensity" OR "mus-
cle density" OR "intermuscular adipose tissue" OR "extra-
cellular water" OR "intracellular water" OR "phase angle" 
OR "muscle quality" OR "muscle composition") AND 
(muscle). The search was performed without date restric-
tion and was updated until October 2023.

One author (NV) conducted the initial search, dur-
ing which all the entries gathered from the databases 
were uploaded to the Rayyan QCRI website for the pur-
pose of removing duplicates. Two reviewers (NV and 
XR) screened identified potentially eligible titles and 

https://osf.io/anjr4/?view_only=05969c336a0847028766e96f574eb63e
https://osf.io/anjr4/?view_only=05969c336a0847028766e96f574eb63e
https://doi.org/
https://doi.org/
https://doi.org/10.17605/OSF.IO/3GD6Y
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abstracts, resolving disagreements together to mitigate 
interpretation bias. The full text of potentially eligible 
records was analyzed following the eligibility criteria for 
final inclusion. Reasons for exclusions were identified. 
When articles were not available we solicited authors by 
e-mail.

We decided not to include noninvasive imaging tech-
niques in the search, given that our research question 
about the best noninvasive methods for assessing muscle 
quality could introduce bias by prejudging the results. 
Therefore, we chose to focus the search on relevant 
results related to muscle quality without explicitly incor-
porating the noninvasive techniques used. This decision 
was made to maintain impartiality in identifying the 
available evidence.

Data collection
Data from the included studies were collected and coded 
in Microsoft Excel (Microsoft Corp). The following infor-
mation was extracted from each included study: (1) ref-
erence, author and year of publication, (2) participants 
characteristics (sample size; sex; age and health status), 
(3) intervention characteristics (frequency, type, dura-
tion), (4) muscle quality assessment procedures and out-
comes, (5) group of muscles on which the measurement 
has been performed, and (6) results of the exercise inter-
vention on muscle quality.

Risk of bias
To ensure the transparency and reliability of the results 
and findings, a Bias Risk Assessment has been performed 
for each study included in this review, using the Physi-
otherapy Evidence Database (PEDro) scale. The reliabil-
ity of the PEDro scale in rating the quality of randomised 
controlled trials has been documented in a paper by 
Maher et al. [63].

To ascertain the overall risk of bias across the stud-
ies, the following convention was employed. The highest 

attainable score is ten, as the initial item is not included 
in the PEDro score computation. The methodological 
quality of the studies was classified as excellent when 
scores ranges from eight to ten, high with scores between 
six and seven, moderate with scores from four to five, and 
low with scores of three or below.

Results
Study selection
From scientific databases, potential studies were 
directly exported into Rayyan (https://​www.​rayyan.​ai/) 
for removing duplicates and performing the screen-
ing applying inclusion and exclusion criteria previously 
determined. After the above procedure was completed, 
the following 6465 records were identified. A flow chart 
illustrating the study selection process is shown in Fig. 1. 
Duplicate records were removed (n = 3297). After titles 
and abstracts were screened, 2985 records were removed 
and 183 full texts were evaluated. An additional 143 stud-
ies were excluded after full text assessments for eligibil-
ity. Thereafter, 40 studies were considered eligible for the 
systematic review. After eliminating the original non-pri-
mary studies [64], a total of 34 studies were included.

Risk of bias of the included studies
The median score of the PEDro checklist (Table  2) was 
five (some risk of bias-moderate quality). 28 studies 
achieved four to fivepoints (some risk of bias-moderate 
quality) and six studies achieved six to seven points (low 
risk of bias-good quality).

Study characteristics
The characteristics of the included studies are detailed in 
Table 3. A total of 1,040 participants, with an age older 
than 60  years, were analyzed in this systematic review. 
Regarding participants sex, 21 studies reported a sample 
consisting of both male and females (n: 632, 61% of total 
participants). Five studies were composed of only men (n: 

Table 1  Eligibility criteria

Category Inclusion criteria Exclusion criteria

Participants Healthy older adults (+ 60 years) Studies that included participants under 60 years of age and health 
problems (e.g., injuries or chronic pathologies)

Interventions Exercise interventions No exercise intervention

Comparators - Different exercise interventions and control groups
- Testing procedures used for direct quantification of muscle 
quality

Not applicable

Outcomes Studies that reported muscle quality outcomes before and after 
exercise intervention. Testing procedures used for direct quantifi-
cation of muscle quality

Muscle quality asses indirectly or invasively

Study design Randomized controlled and non-randomized controlled trials 
and one group studies

Studies including case, observational studies, and systematic 
reviews

https://www.rayyan.ai/
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116, 11% of total participants) and nine groups involved 
only females (n: 292, 28% of total participants).

From the analyzed articles, two articles use CT, 18 
use US, nine use MRI, two use TMG, two use myo-
tonometry and one use BIA (there are articles with 
more than one test). Among the articles that ana-
lyze more than one test, one MRI + US and one 
tensiomyography + myotonometry.

As for the interventions performed in the studies ana-
lyzed, 25 studies conducted only resistance exercise, 
four studies only aerobic activity, five studies performed 
concurrent training. The frequency of the weekly ses-
sions ranged from two to five sessions per week, with 
the majority of studies conducting two sessions per week 
(n: 14, 39%) and three sessions per week (n: 18, 50%). A 
total of 891 participants were enrolled in the intervention 
groups. This number exceeds that of the control groups, 
a discrepancy attributable to the inclusion of multiple 
studies evaluating diverse training regimens.

In our results, CT was predominantly used to evalu-
ate cross-sectional areas, IMAT, thigh muscle density, 
total adipose tissue in the thigh, and muscle attenuation, 
focusing on the quadriceps and hamstrings muscles [71, 
87]. MRI provided a wide range of muscle assessments, 
cross-sectional area analysis constituted 66.67% of the 

assessments, while IMAT and fat infiltration accounted 
for 22.22%, single assessments of muscle fat/water ratio, 
muscle mechanical quality, and intramuscular non-
contractile tissue (IMNCT) comprised the remainder 
of the evaluations. The majority of MRI measurements 
(88.89%) targeted the quadriceps, except for one evalua-
tion (11.11%) which assessed the BB [66, 68, 72, 74, 75, 
88, 90–92].

US imaging revealed echo intensity as the most com-
mon measurement at 66.7%, predominantly analyzed 
in the RF (ten studies) and VL (seven studies). Penna-
tion angle and fascicle length were assessed in 50% and 
38.9% of studies, respectively, with the VL as the pri-
mary muscle of interest. CSA was examined in 22.2% of 
cases, focusing mainly on the RF and VL [43, 65–67, 69, 
70, 73, 76, 77, 80–86, 89, 93–95]. Another muscle qual-
ity assessment tool highlighted in this review is the BIA, 
conducted in one study, to measure the PhA.

Building on this, the systematic review also reveals 
that TMG primarily assessed contraction time and dis-
placement in the VL, along with the RF, BF, TA, GM, 
and GL [32, 96•]. Similarly, myotonometry [32, 78•] 
measured muscle tone and stiffness, focusing on the RF 
and TA, with additional tests on the BF, gluteus major, 
gastrocnemius, and VL. To conclude, a comprehensive 

Fig. 1  Flow diagram of the systematic search process
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summary outlining the specific outcomes measured to 
assess muscle quality using non-invasive tools is pro-
vided in Table 4.

For exercise effects on muscle quality in our system-
atic review, echo intensity decreased in eight studies 
[43, 73, 77, 80–82, 94, 95], while it remained unchanged 
in four [76, 85, 89, 93]. Within the review, seven arti-
cles reported improvements in pennation angle [65–67, 
69, 70, 84, 86], while three articles observed no change 
[77, 83, 85]. In the systematic review we conducted, we 
observed that resistance exercise interventions improve 
CSA [66, 68, 75, 84, 85, 88, 90, 92] or maintain it [74, 

77, 91, 95]. Also, our findings indicate improvements in 
fascicle length in two studies [65, 67], while five others 
reported no change [65, 70, 83–85].

Discussion
One of the key objectives of this systematic review 
was to collect and analyze studies focused on the use 
of non-invasive tools for direct assessment of muscle 
quality in older adults after exercise interventions. In 
addition, we aimed to understand the impact of these 
interventions on muscle quality.

Table 2  The median score of the PEDro checklist

Pedro scale 1 2 3 4 5 6 7 8 9 10 11 Score Study Quality

Baptista et al., 2016 [65] 0 1 0 1 0 0 1 1 0 1 1 6 Good

Bruseghini et al., 2019 [66] 1 0 0 1 0 0 0 1 1 1 1 5 Moderate

Cepeda et al., 2015 [67] 0 1 0 1 0 0 0 0 0 1 1 4 Moderate

Da boilt et al., 2016 [68] 1 0 0 1 0 0 0 1 1 1 1 5 Moderate

Franchi et al., 2019 [69] 1 0 0 1 0 0 0 1 0 1 1 4 Moderate

Gallo et al., 2019 [70] 1 0 0 1 0 0 0 1 0 1 1 4 Moderate

Goodpaster et al., 2008 [71] 0 1 0 1 0 0 1 0 0 1 1 5 Moderate

Greig et al., 2011 [72] 1 0 0 0 0 0 0 1 1 1 1 4 Moderate

Hill et al., 2022 [73] 1 0 1 0 0 0 0 1 0 1 1 5 Moderate

Jacobs et al., 2014 [74] 1 1 0 1 0 0 0 1 0 1 1 6 Good

Konopka et al., 2018 [75] 1 0 0 0 0 0 0 1 1 1 1 5 Moderate

Labata-Lezaun N, 2023 [32] 1 0 0 1 0 0 0 1 1 1 1 5 Moderate

Lopez et al., 2020 [76] 1 1 1 1 0 0 1 1 0 1 1 7 Good

Lopez-Lopez et al., 2021 [77] 1 1 0 1 0 0 1 1 0 1 1 6 Good

Mollà-Casanova et al., 2023 [78] 1 1 1 1 1 0 0 1 0 1 1 7 Good

Nunes et al., 2019 [79] 1 0 0 1 0 0 0 1 1 1 1 5 Moderate

Radaelli et al., 2013 [80] 0 1 0 1 0 0 0 1 0 1 1 5 Moderate

Radaelli, Wilhelm, et al., 2014 [81] 1 1 0 1 0 0 0 1 0 1 1 5 Moderate

Radaelli, et al., 2019 [82] 1 1 0 1 0 0 0 1 0 1 1 5 Moderate

Raj et al., 2012 [83] 1 1 0 1 0 0 0 1 0 1 1 5 Moderate

Rodriguez-Lopez et al., 2022 [84] 1 1 0 1 0 0 0 1 0 1 1 5 Moderate

Scanlon et al., 2014 [85] 1 1 0 1 0 0 0 1 0 1 1 5 Moderate

Suetta et al., 2008 [86] 1 1 0 1 0 0 1 0 0 1 1 5 Moderate

Taaffe DR, 2009 [87] 1 1 0 1 0 0 0 1 0 1 1 5 Moderate

Tanton et al., 2009 [88] 1 0 0 0 0 0 0 1 1 1 1 4 Moderate

Teodoro et al., 2020 [89] 1 1 0 1 0 0 1 1 0 1 1 6 Good

Tracy et al., 1999 [90] 1 0 0 0 0 0 0 1 1 1 1 4 Moderate

Vojciechowski et al., 2021 [91] 1 0 0 1 0 0 0 1 0 1 1 4 Moderate

Watanabe et al., 2014 [92] 0 1 0 1 0 0 0 0 0 1 1 4 Moderate

Wilhelm et al., 2014 [43] 1 0 0 1 0 0 0 1 0 1 1 4 Moderate

Yoshiko, Kaji, et al., 2018 [93] 1 0 0 1 0 0 0 1 1 1 1 5 Moderate

Yoshiko, Tomita, et al., 2018 [94] 1 0 0 1 0 0 0 1 0 1 1 4 Moderate

Yoshiko et al., 2021 [95] 1 0 0 1 0 0 0 1 0 1 1 4 Moderate

Zubac et al., 2019 [96] 1 1 0 1 0 0 0 0 0 1 1 4 Moderate
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Direct non‑invasive muscle quality measurement tools
Non-invasive techniques provide a comprehensive 
assessment of muscle quality by evaluating factors such 
as muscle architecture, composition, fat infiltration, 
fibrosis, and neural activation [12•]. The following discus-
sion will delineate the array of tools employed to directly 
measure muscle quality after physical exercise inter-
ventions. Direct methods for assessing muscle quality, 
involve the direct measurement of muscle architecture, 
addressing both microscopic and macroscopic aspects of 
muscle composition and structure [30••].

Among the non-invasive tools employed to directly 
assess muscular quality, the review of the literature 
revealed that US was utilized in 18 articles, MRI in nine, 
while CT, TMG, and myotonometry were each applied in 
two articles, and BIA was used in one, with some articles 
incorporating more than one diagnostic modality.

CT and MRI are essential for analyzing muscle com-
position, providing precise assessments of muscle qual-
ity through measures of intramuscular fat infiltration and 
cross-sectional area, both approved methodologies by 
EWGSOP2 for determining skeletal muscle quantity and 
quality [30, 39, 97–99••], these results are consistent with 
those obtained in this review. While CT offers rapid and 
cost-effective muscle quality analysis, it does generate 
radiation exposure. In contrast MRI ensures a radiation-
free alternative at a higher cost. Notably both showed 
concordance in clinical muscle quality assessment [39, 
98].

Ultrasonography is emerging as a fast, non-invasive, 
and accessible imaging modality for musculoskeletal 
assessment [100•]. Current B-mode ultrasound tech-
niques enable detailed examination of muscle archi-
tecture, including cross-sectional area, echo intensity, 
fascicle length, and pennation angle, which are critical 
markers of muscle quality [97]. Our results highlight that 
the quadriceps is the most studied muscle due to its size 
and accessibility, corroborating what the scientific litera-
ture mentions [101]. Recent systematic reviews assessing 
the validity and reliability of ultrasonography for skel-
etal muscle evaluation have revealed strong interclass 
correlation coefficients and confirmed its comparative 

validity against other imaging modalities [35, 101, 102]. 
Although efforts to standardize these measurements are 
ongoing, these measurements are still highly depend-
ent on operator expertise and do not provide definitive 
results for the early detection of muscle quality loss [50, 
77•]. These findings are in line with the observations of 
the EWGSOP, which identifies ultrasound as a promising 
method for assessing skeletal muscle although it empha-
sizes the need for further research for its clinical applica-
tion [30••].

BIA, through PhA analysis, emerges as an effective 
non-imaging method to characterize muscle quality com-
ponents. BIA-derived PhA can be used to detect muscle 
quality and identify sarcopenia [60, 97]. Recent studies 
have started to recognize it as a significant predictor of 
muscle quality in older adults, associated with adverse 
clinical outcomes, including mortality [103, 104]. Also, 
the EWGSOP incorporates BIA-derived PhA in their cri-
teria for muscle quality assessment [30••].

Expanding on these techniques TMG and myotonom-
etry are non-invasive diagnostic tools that measure mus-
cles mechanical properties. TMG utilizes electrodes to 
assess muscle contractile properties and tone in superfi-
cial muscles by quantifying radial deformation resulting 
from electrically induced contractions [105, 106•]. TMG 
has proven to be a valuable tool for assessing neuromus-
cular function in older adults, as it is sensitive to changes 
in muscle composition, architecture, and pre-atrophy of 
skeletal muscles [57]. A promising tool for the non-inva-
sive assessment of muscle quality in aging and diseased 
populations [57]. Myotonometry measures muscle stiff-
ness by monitoring radial tissue deformation in response 
to a perpendicular force applied through a hand-held 
device. It evaluates key muscle biomechanical and vis-
coelastic properties, including stiffness, compliance and 
elasticity [107]. Compared to elastography and TMG, 
myotonometry is fast, portable and cost-effective, dis-
playing higher reliability and validity for differentiating 
muscle stiffness levels [107]. While existing studies affirm 
its reliability and validity within musculoskeletal diagnos-
tics [108–111], further extensive validation is necessary 
for its routine clinical application. The research suggests 

Table 4  Specific outcomes measured to assess muscle quality using non-invasive tools

Tool Outcomes Measured

Magnetic Resonance Imaging Intramuscular fat infiltration, cross-sectional area, intermuscular adipose tissue

Computed Tomography Intramuscular fat infiltration, cross-sectional area, muscle density

Ultrasonography Cross-sectional area, echo intensity, echo variation, fascicle length, pennation angle

Bioelectrical Impedance Analysis Phase Angle (PhA)

Tensiomyography Muscle contractile properties (contraction time and maximal radial displacement), muscle tone

Myotonometry Muscle stiffness, compliance, elasticity
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that changes in muscle architecture, such as an increase 
in pennation angle, can impact tetanic tension and ulti-
mately influence contractile properties [112]. This inter-
play between morphology, architecture, and contractile 
capacity in human pennate muscle is reflected in spe-
cific adaptation responses to intensive resistance training 
[112]. Additional studies emphasize the substantial influ-
ence of architectural parameters on muscular contractile 
dynamics, underscoring the relevance of architectural 
properties in the analysis of contractile behavior [113, 
114].

Exercise effects on muscle quality
The heterogeneity in defining and assessing muscle archi-
tecture and composition contributes to the variance in 
results across different studies. This variation is further 
influenced by different training protocols and measure-
ment techniques, which could explain the outcomes 
observed.

The mechanisms underlying the association between 
echo intensity and MQ are not fully elucidated, but it 
is hypothesized that intramuscular content alterations 
reflect performance outcomes [115]. Higher echo inten-
sity usually denotes lower muscle quality and perfor-
mance due to increased fibrous and adipose infiltration, 
conversely, reduced echo intensity tends to indicate 
enhanced performance [9, 115, 116]. The results of our 
systematic review, in which echo intensity decreased, 
aligns with findings from systematic reviews in which 
echo intensity is improved after exercise training [115]. 
Although ultrasound-based echo intensity is a com-
mon method for assessing the quadriceps femoris, its 
use raises questions in both research and clinical set-
tings, particularly regarding the physiological interpre-
tation of echo intensity changes and potential technical 
inconsistencies.

Also, exercise can influence the pennation angle of 
muscles, which is a potential indicator of muscle hyper-
trophy, the plasticity of muscle architecture, and the 
efficiency of force transmission [117]. Other reviews cor-
roborate our findings, with seven studies noting improve-
ments in pennation angle in older adults and others 
showing no change [118••]. These discrepancies may 
stem from the eccentric nature of resistance training or 
the short duration of certain studies [83, 85•].

During the aging process, there is a reduction in the 
size and number of muscles fibers, leading to atrophy and 
a reduction in cross-sectional area (CSA) [118, 119••]. In 
the systematic review we conducted, we observed that 
resistance exercise interventions improve CSA [66, 68, 
75, 84, 85, 88, 90, 92] or maintain it [74, 77, 91, 95]. These 
improvements are attributed to muscle hypertrophy and 
myofibrillar protein turnover [85]. The results of our 

review are consistent with the results of other studies and 
reviews [118–121••], [119, 120].

Fascicle length is related to maximal shortening veloc-
ity and the force–length relationship. Such lengthening 
can result from an increase in serial sarcomere number 
or hypertrophy along the muscle fibers [115••]. As seen 
some studies resistance training increased it in older men 
[122, 123]. Yet, our results align with research showing 
some or no muscle architecture changes after certain 
training periods [124, 125].

When exploring the assessment of muscle quality, it 
allows us to unravel the implications that aging generates 
on it. Aging-associated fatty infiltration of skeletal mus-
cle has been linked to negative health effects and func-
tional deficits [74, 126]. There is a connection between 
fat infiltration in skeletal muscle and physical inactivity 
in elderly persons. Less is known about the idea that an 
exercise program can alter an older adult’s IMAT level 
measured by MRI [126]. This justifies the improvement 
of fat infiltration and IMAT [66, 75] with some exercise 
interventions analyzed in the systematic review, while 
being maintained in others [68, 72, 74]. Prior research 
has looked at how resistance and multimodal exercise 
training affect older adults’ muscle composition and 
has demonstrated the ability to reduce IMAT [74, 127, 
128]. Whereas others cite no change in fat infiltration 
with exercise interventions [129, 130]. It has also been 
observed that physical exercise is capable of generating 
significant changes in CSA [130, 131]. In our system-
atic review CSA improves in three [88, 90, 92] studies 
and remains unchanged in one [91]. Other studies have 
shown positive changes in CSA with moderate intensity 
resistance training, but did not obtain improvements 
with low intensities [130]. Also, in another study only 
those with a high percentage of IMAT improved CSA 
[74].

While exploring the effects of age and exercise inter-
ventions on muscle composition, CT is crucial for assess-
ing muscle quality by quantifying muscle attenuation 
and fat content, based on the specific attenuation of each 
tissue measured in Hounsfield units (HU). Increases 
in these areas are linked to poorer muscle quality and 
higher mortality risk [132]. Age-related increases in 
these fat deposits have been associated with metabolic 
and muscular dysfunction [126]. Our systematic review 
elucidates that physical exercise prevents the increase 
of intermuscular fat and the decrease of muscle density, 
compared to control [71], while another study shows that 
exercise improves muscle attenuation without increasing 
IMAT [133]. The findings align with existing research, a 
study with a similar population showed that while mus-
cle CSA remained unchanged, there was a reduction in 
subcutaneous fat and IMAT [134]. In obese older adults, 
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interventions including exercise and nutrition are proven 
to enhance subcutaneous and intermuscular fat, muscle 
CSA, and muscle attenuation [126, 132, 133, 135, 136•].

Moreover, aging leads to a decline in muscle contrac-
tile properties, often due to the loss of type II fibers [56]. 
TMG measured Tc has been found to correlate with mus-
cle fiber composition, in muscles such as vastus lateralis 
[56], while Dm correlates with muscle atrophy [56]. As 
far as we have been able to observe the vast majority of 
interventions focus on young populations, where a regu-
lar decrease in dm is a common post-training response 
to strength training [57, 96, 137, 138]. Improvements in 
BB Dm and Tc have also been reported [139], although 
in some studies Dm has improved but Tc has remained 
unchanged [140]. These results agree with those obtained 
in the systematic review [32, 96•].

In the findings of our systematic review, it is observed 
that resistance training notably enhances muscle stiff-
ness, whereas aerobic training maintains muscle tone and 
frequency [32, 78•] assessed by myotonometry. Compa-
rable populations have shown improvements in muscle 
tone, stiffness, and elasticity following neck stabilization 
exercises [141], with muscle stiffness responding more 
noticeably than tone or elasticity to upper-extremity 
rehabilitation post-stroke [142].A field review reveals 
that resistance training effects on muscle are inconsist-
ent, while plyometric training improves muscle stiffens 
also in pathological cases, exercise normalizes stiffness, 
but further study is needed [143•].

Furthermore, as evidenced by the results of the 
review, resistance exercise increases BIA-derived PhA 
[79], aligning with the literature linking resistance with 
improvements in strength and PhA in older adults [79, 
104, 144]. Likewise, these studies associate PhA with 
changes in muscle strength [145]. To enhance PhA, a 

program of at least twelve weeks is recommended, with 
three weekly sessions of six to ten exercises, as applied 
in the intervention analyzed [104].

Primary multisource parameters in muscle quality 
assessment research
Among the articles incorporating multiple tests, some 
specifically combined different methodologies like 
MRI + US and tensiomyography + myotonometry [32, 
66•]. MRI and US provide detailed images of muscle 
composition and structure, while tensiomyography and 
myotonometry assess muscle mechanical properties 
and stiffness, respectively.

Muscle quality is characterized by functional and 
morphological domains; the first one aligns with indi-
rect measurements (Table 5) of muscle function relative 
to mass, while the second involves direct assessments of 
muscle architecture [31•]. Our review shows that stud-
ies often use both methods for a holistic understanding 
[17••]. Direct measurements offer precision for clinical 
research, yet are costly and require specialized skills. 
Indirect methods are prized for their speed and practi-
cality [31•]. Employing both allows for cross-validation 
and a more comprehensive understanding of muscle 
quality, blending structural and functional insights.

Moreover, the inclusion of functional capacity tests in 
many articles of the systematic review [32, 68, 71, 72, 
76, 79, 80, 82, 90, 91, 93, 94, 146, 147•,••] is justified by 
the association between muscle quality and functional 
capacity, especially in older adults [148]. Therefore, 
functional capacity tests provide valuable information 
on how muscle quality translates into daily practical 
performance.

Table 5  Indirect measures of muscle quality

Author Definition of indirect muscle quality assessment Formula

Da boilt et al., 2016 [68] Strength per unit of cross-sectional area (CSA) of the knee extensor muscle 
in isometric position

Strength (N) / CSA (cm2)

Goodpaster et al., 2008 [71] Knee extensor strength per unit area of the quadriceps muscle Strength (N) / Quadriceps area (cm2)

Greig et al., 2011 [72] Mechanical quality of the muscle, defined as maximum voluntary contraction 
(MVC) per unit of muscle volume

MVC (N) / Muscle volume (l)

Nunes et al., 2019 [79] Muscle Quality Index (MQI) = Total 1RM force divided by total skeletal muscle 
mass (SMM) in kilograms

1RM (kg) / SMM (kg)

Radaelli et al., 2013 [80] Maximum dynamic strength of the knee extensors divided by the sum 
of the muscular thickness of the quadriceps (MT QUAsum)

Unilateral 1RM knee extension (kg) / 
MT QUAsum (mm)

Radaelli, et al., 2019 [82] MQI maximum rate of torque development (MRTD) and muscle power, calcu-
lated by dividing MRTD by muscle echo intensity (MQEI)

MRTD (Nm/s) / MQEI (Nm/s/mm)

Tracy et al., 1999 [90] The values of isometric strength and 1-RM (N and kg, respectively) were divided 
by muscle volume values

Strength (N or kg) / Muscle volume

Vojciechowski et al., 2021 [91] Relationship between torque (T) and muscular cross-sectional area (CSA) T (Nm) / CSA (cm2)
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Trends in direct muscle quality assessment tools
From the perspective of the EWGSOP, which empha-
sizes the importance of evaluating not just muscle 
quantity but also quality, our review reveals that a 
defined criterion for selecting one evaluation tool over 
another based on an individual’s specific characteristics 
has not yet been established [30••]. This underscores 
the urgency of further researching the concept of mus-
cle quality and how new technologies, combined with 
current physiological knowledge, can be appropriately 
applied to assess muscle quality depending on each 
individual’s unique characteristics. Innovative technol-
ogies such as tensiomyography and myotonometry are 
emerging as important tools in this field [32•]. Phase 
angle measurements using BIA also show promise as a 
biomarker for monitoring muscle quality in older adults 
[103, 104]. In addition, recent advances in quantitative 
ultrasound techniques, such as echogenicity analysis, 
texture parameters, elastography and acoustic wave 
properties, are moving forward although so far, their 
clinical application has been limited [101, 149].

Conclusions
To our knowledge, this study represents one of the 
most comprehensive syntheses of evidence aimed at 
assessing muscle quality (microscopic and macroscopic 
aspects of muscle architecture and composition) in 
older adults through direct methods following physi-
cal exercise interventions. Key findings include: (1) the 
results of this review reflect that the most commonly 
used methods for the direct assessment of muscle qual-
ity after an exercise intervention are ultrasound (US) 
and magnetic resonance imaging (MRI). US imaging 
commonly reported outcomes such as echo intensity, 
pennation angle, fascicle length, and cross-sectional 
area (CSA) in the rectus femoris (RF) and vastus later-
alis (VL). MRI, primarily assessed CSA, intramuscular 
adipose tissue (IMAT), and fat infiltration, with a pre-
dominant focus on the quadriceps. Exercise-induced 
reductions in echo intensity, improvements in penna-
tion angle, and CSA enhancements were observed with 
ultrasound. MRI highlighted benefits in fat infiltration 
and IMAT; (2) a general tendency of exercise interven-
tions to improve or maintain muscle quality; (3) the fre-
quent combination of direct measures of muscle quality 
with indirect methods and functional capacity tests in 
current research. The majority of the reviewed arti-
cles employ both direct and indirect methods to assess 
muscle quality; and (4) an emerging development of 
technological innovation in the design of new tools 
for the direct detection of muscle quality, exemplified 
by tools such as US and phase angle measurement, 

although their clinical application remains limited in 
the target population.

Regarding the limitations of the study, the condition 
imposed to include studies, where muscle quality had to 
be measured directly in conjunction with exercise inter-
ventions, significantly limited the number of articles eli-
gible for this review. Furthermore, a limitation has been 
observed in the inclusion of studies using phase angle as 
a parameter, this is because the studies did not perform 
a comparative analysis with muscle quality, which could 
have left out relevant articles. Likewise, no studies were 
found that employ all the direct measurement param-
eters of muscle quality together. The lack of a standard-
ized protocol and the diversity in the evaluation methods 
used by different authors prevent an accurate and unified 
comparison of the results. The decision not to perform a 
meta-analysis on the effects of exercise on muscle qual-
ity is grounded in the notable diversity observed in the 
included studies. Variability in the tools used to measure 
muscle quality, differences in the muscles assessed, and 
the various aspects measured contribute to a significant 
level of methodological heterogeneity, compromising the 
necessary comparability for a robust meta-analysis.

A promising direction for future research is the devel-
opment of personalized protocols for the selection of 
measurement tools, tailored to the specific conditions 
of each patient. This would include the identification 
of which tool is the most appropriate according to the 
individual profile and needs. In parallel, it is crucial to 
investigate advanced non-invasive techniques in sports 
medicine and rehabilitation to measure muscle quality 
with greater precision and sensitivity, which could lead to 
the creation of personalized physical exercise programs 
based on each person’s specific muscle weaknesses. Fur-
thermore, there is a need to explore the effectiveness of 
these tools in different muscles, determining the most 
effective one in which to perform the measurements in 
order to extrapolate the data to the diagnosis of muscle 
diseases in clinical settings.

Abbreviations
BB	� Biceps Brachii
BF	� Biceps Femoris
BF	� Biceps Femoris
BIA	� Bioimpedance
BR	� Brachialis
CSA	� Cross-Sectional Area
CG	� Control Group
CON	� Low-intensity + normal speed
CT	� Computed Tomography
Dm	� Maximal radial displacement
DXA	� Dual Energy X-ray Absorptiometry
EG	� Exercise Group
EWGSOP	� The European Working Group on Sarcopenia in Older People
GL	� Gastrocnemius Lateralis
GM	� Gastrocnemius Medialis
HITT	� High-Intensity Interval Training
IMAT	� Intramuscular Adipose Tissue



Page 15 of 19Virto et al. BMC Geriatrics          (2024) 24:642 	

LST	� Low-intensity + slow movement
MRI	� Magnetic Resonance Imaging
MRI	� Magnetic Resonance Imaging
MSK-US	� Musculoskeletal Ultrasound
PA	� Pennation Angle
PhA	� Phase Angle
QF	� Quadriceps Femoris
RF	� Rectus Femoris
RT	� Resistance Training
S/W	� Session/Week
TA	� Tibialis Anterior
Tc	� Time contraction
TMG	� Tensiomyography
US	� Ultrasound Sonography
VI	� Vastus Intermedius
VL	� Vastus Lateralis
VM	� Vastus Medialis

Acknowledgements
Not applicable.

Authors’ contributions
NV and XR conceived the idea and design for the article. NV and XR performed 
the literature search, data acquisition, analysis, and/or interpretation. NV, XR, 
AM-Z and BG-Z drafted and/or critically revised the work. All authors have 
read, and approved the final version of the manuscript.

Funding
N.V received a University of Deusto grant from the researcher education 
program (Award number: FPI UD_2022_10).

Availability of data and materials
The systematic search queries and data charting methods employed in this 
study are available upon request. Additionally, our systematic review was reg-
istered on the Open Science Framework (OSF) platform on October 24, 2023, 
with the registration DOI [https://​doi.​org/https://​doi.​org/​10.​17605/​OSF.​IO/​
3GD6Y]. The authors are committed to fostering transparency in research, and 
for any inquiries or requests for specific methodological details, we welcome 
communication with the corresponding author.

Declarations

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors have no competing interests to declare that are relevant to the 
content of this article.

Received: 28 November 2023   Accepted: 24 July 2024

References

Papers of particular interest, published recently, have been highlighted 
as: • Of importance •• Of major importance
	 1.	 Clark BC, Manini TM. Sarcopenia =/= dynapenia. J Gerontol A Biol Sci 

Med Sci. 2008;63:829–34. https://​doi.​org/​10.​1093/​gerona/​63.8.​829.
	 2.	 Morley JE, Baumgartner RN, Roubenoff R, Mayer J, Nair KS. Sarcopenia. J 

Lab Clin Med 2001;137. https://​doi.​org/​10.​1067/​mlc.​2001.​113504.
	 3.	 Goodpaster BH, Park SW, Harris TB, Kritchevsky SB, Nevitt M, Schwartz 

AV, et al. The loss of skeletal muscle strength, mass, and quality in older 
adults: the health, aging and body composition study. J Gerontol A Biol 

Sci Med Sci. 2006;61:1059–64. https://​doi.​org/​10.​1093/​gerona/​61.​10.​
1059.

	 4.	 Crimmins EM. Recent trends and increasing differences in life expec-
tancy present opportunities for multidisciplinary research on aging. Nat 
Aging. 2021;1:12–3. https://​doi.​org/​10.​1038/​s43587-​020-​00016-0.

	 5.	 Río X, González-Pérez A, Larrinaga-Undabarrena A, Coca A. Analysis of 
quality of life parameters in a health-promoting program for a popula-
tion with cardiovascular risk factors: a preliminary study. SN Compr Clin 
Med. 2020;2:2221–9. https://​doi.​org/​10.​1007/​s42399-​020-​00512-9.

	 6.	 Río X, Guerra-Balic M, González-Pérez A, Larrinaga-Undabarrena A, Coca 
A. Valores de referencia del SPPB en personas mayores de 60 años en el 
País Vasco. Atención Primaria. 2021;53:102075. https://​doi.​org/​10.​1016/j.​
aprim.​2021.​102075.

	 7.	 Koo BK. Assessment of muscle quantity, quality and function. J Obes 
Metab Syndr. 2022;31:9–16. https://​doi.​org/​10.​7570/​jomes​22025.

	 8.	 Larsson L, Degens H, Li M, Salviati L, Lee YI, Thompson W, et al. Sarco-
penia: aging-related loss of muscle mass and function. Physiol Rev. 
2019;99:427–511. https://​doi.​org/​10.​1152/​physr​ev.​00061.​2017.

	 9.	 Ikezoe T. Age-related change in muscle characteristics and resistance 
training for older adults. Phys Ther Res. 2020;23:99–105. https://​doi.​org/​
10.​1298/​ptr.​R0009.

	 10.	 McLeod M, Breen L, Hamilton DL, Philp A. Live strong and prosper: the 
importance of skeletal muscle strength for healthy ageing. Biogerontol-
ogy. 2016;17:497–510. https://​doi.​org/​10.​1007/​s10522-​015-​9631-7.

	 11.	 Landi F, Cruz-Jentoft AJ, Liperoti R, Russo A, Giovannini S, Tosato M, et al. 
Sarcopenia and mortality risk in frail older persons aged 80 years and 
older: results from ilSIRENTE study. Age Ageing. 2013;42:203–9. https://​
doi.​org/​10.​1093/​ageing/​afs194.

	 12.	 McGregor RA, Cameron-Smith D, Poppitt SD. It is not just muscle mass: 
a review of muscle quality, composition and metabolism during ageing 
as determinants of muscle function and mobility in later life. Longevity 
& Healthspan. 2014;3:9. https://​doi.​org/​10.​1186/​2046-​2395-3-9.

	 13.	 Distefano G, Goodpaster BH. Effects of exercise and aging on skeletal 
muscle. Cold Spring Harb Perspect Med. 2018;8:a029785. https://​doi.​
org/​10.​1101/​cshpe​rspect.​a0297​85.

	 14.	 Cartee GD, Hepple RT, Bamman MM, Zierath JR. Exercise promotes 
healthy aging of skeletal muscle. Cell Metab. 2016;23:1034–47. https://​
doi.​org/​10.​1016/j.​cmet.​2016.​05.​007.

	 15.	 Gremeaux V, Gayda M, Lepers R, Sosner P, Juneau M, Nigam A. Exercise 
and longevity. Maturitas. 2012;73:312–7. https://​doi.​org/​10.​1016/j.​matur​
itas.​2012.​09.​012.

	 16.	 Hortobágyi T, Vetrovsky T, Brach JS, van Haren M, Volesky K, Radaelli R, 
et al. Effects of exercise training on muscle quality in older individuals: 
a systematic scoping review with meta-analyses. Sports Med Open. 
2023;9:41. https://​doi.​org/​10.​1186/​s40798-​023-​00585-5.

	 17.	 Radaelli R, Taaffe DR, Newton RU, Galvão DA, Lopez P. Exercise effects on 
muscle quality in older adults: a systematic review and meta-analysis. 
Sci Rep. 2021;11:21085. https://​doi.​org/​10.​1038/​s41598-​021-​00600-3.

	 18.	 Kalache A, Kickbusch I. A global strategy for healthy ageing. World 
Health. 1997;50:4–5.

	 19.	 Seo M-W, Jung S-W, Kim S-W, Lee J-M, Jung HC, Song J-K. Effects of 
16 weeks of resistance training on muscle quality and muscle growth 
factors in older adult women with sarcopenia: a randomized controlled 
trial. Int J Environ Res Public Health. 2021;18:6762. https://​doi.​org/​10.​
3390/​ijerp​h1813​6762.

	 20.	 Ward LC, Brantlov S. Bioimpedance basics and phase angle fundamen-
tals. Rev Endocr Metab Disord. 2023;24:381–91. https://​doi.​org/​10.​1007/​
s11154-​022-​09780-3.

	 21.	 Kumar S, Dutt A, Hemraj S, Bhat S, Manipadybhima B. Phase angle 
measurement in healthy human subjects through bio-impedance 
analysis. Iran J Basic Med Sci. 2012;15:1180–4.

	 22.	 Cole KS. Electric phase angle of cell membranes. J Gen Physiol. 
1932;15:641–9. https://​doi.​org/​10.​1085/​jgp.​15.6.​641.

	 23.	 Lopez P, Pinto RS, Radaelli R, Rech A, Grazioli R, Izquierdo M, et al. 
Benefits of resistance training in physically frail elderly: a systematic 
review. Aging Clin Exp Res. 2018;30:889–99. https://​doi.​org/​10.​1007/​
s40520-​017-​0863-z.

	 24.	 Harper C, Gopalan V, Goh J. Exercise rescues mitochondrial coupling in 
aged skeletal muscle: a comparison of different modalities in prevent-
ing sarcopenia. J Transl Med. 2021;19:71. https://​doi.​org/​10.​1186/​
s12967-​021-​02737-1.

https://doi.org/
https://doi.org/10.17605/OSF.IO/3GD6Y
https://doi.org/10.17605/OSF.IO/3GD6Y
https://doi.org/10.1093/gerona/63.8.829
https://doi.org/10.1067/mlc.2001.113504
https://doi.org/10.1093/gerona/61.10.1059
https://doi.org/10.1093/gerona/61.10.1059
https://doi.org/10.1038/s43587-020-00016-0
https://doi.org/10.1007/s42399-020-00512-9
https://doi.org/10.1016/j.aprim.2021.102075
https://doi.org/10.1016/j.aprim.2021.102075
https://doi.org/10.7570/jomes22025
https://doi.org/10.1152/physrev.00061.2017
https://doi.org/10.1298/ptr.R0009
https://doi.org/10.1298/ptr.R0009
https://doi.org/10.1007/s10522-015-9631-7
https://doi.org/10.1093/ageing/afs194
https://doi.org/10.1093/ageing/afs194
https://doi.org/10.1186/2046-2395-3-9
https://doi.org/10.1101/cshperspect.a029785
https://doi.org/10.1101/cshperspect.a029785
https://doi.org/10.1016/j.cmet.2016.05.007
https://doi.org/10.1016/j.cmet.2016.05.007
https://doi.org/10.1016/j.maturitas.2012.09.012
https://doi.org/10.1016/j.maturitas.2012.09.012
https://doi.org/10.1186/s40798-023-00585-5
https://doi.org/10.1038/s41598-021-00600-3
https://doi.org/10.3390/ijerph18136762
https://doi.org/10.3390/ijerph18136762
https://doi.org/10.1007/s11154-022-09780-3
https://doi.org/10.1007/s11154-022-09780-3
https://doi.org/10.1085/jgp.15.6.641
https://doi.org/10.1007/s40520-017-0863-z
https://doi.org/10.1007/s40520-017-0863-z
https://doi.org/10.1186/s12967-021-02737-1
https://doi.org/10.1186/s12967-021-02737-1


Page 16 of 19Virto et al. BMC Geriatrics          (2024) 24:642 

	 25.	 Sklivas AB, Robinson LE, Uhl TL, Dupont-Versteegden EE, Mayer KP. 
Efficacy of power training to improve physical function in individuals 
diagnosed with frailty and chronic disease: A meta-analysis. Physiol Rep. 
2022;10:e15339. https://​doi.​org/​10.​14814/​phy2.​15339.

	 26.	 Wu Z-J, Wang Z-Y, Gao H-E, Zhou X-F, Li F-H. Impact of high-intensity 
interval training on cardiorespiratory fitness, body composition, physi-
cal fitness, and metabolic parameters in older adults: A meta-analysis 
of randomized controlled trials. Exp Gerontol. 2021;150:111345. https://​
doi.​org/​10.​1016/j.​exger.​2021.​111345.

	 27.	 Vetrovsky T, Steffl M, Stastny P, Tufano JJ. The Efficacy and Safety 
of Lower-Limb Plyometric Training in Older Adults: A Systematic 
Review. Sports Med. 2019;49:113–31. https://​doi.​org/​10.​1007/​
s40279-​018-​1018-x.

	 28.	 Luo D, Lin Z, Li S, Liu S-J. Effect of nutritional supplement combined 
with exercise intervention on sarcopenia in the elderly: A meta-analysis. 
Int J Nurs Sci. 2017;4:389–401. https://​doi.​org/​10.​1016/j.​ijnss.​2017.​09.​
004.

	 29.	 Chen J, Zhou R, Feng Y, Cheng L. Molecular mechanisms of exer-
cise contributing to tissue regeneration. Sig Transduct Target Ther. 
2022;7:1–24. https://​doi.​org/​10.​1038/​s41392-​022-​01233-2.

	 30.	 Cruz-Jentoft AJ, Bahat G, Bauer J, Boirie Y, Bruyère O, Cederholm T, et al. 
Sarcopenia: revised European consensus on definition and diagnosis. 
Age Ageing. 2019;48:16–31. https://​doi.​org/​10.​1093/​ageing/​afy169.

	 31.	 de Lucena Alves CP, de Almeida SB, Lima DP, Neto PB, Miranda AL, 
Manini T, et al. Muscle quality in older adults: a scoping review. J Am 
Med Dir Assoc. 2023;24:462-467.e12. https://​doi.​org/​10.​1016/j.​jamda.​
2023.​02.​012.

	 32.	 Labata-Lezaun N, Canet-Vintró M, López-de-Celis C, Rodríguez-Sanz J, 
Aiguadé R, Cuadra-Llopart L, et al. Effectiveness of a multicomponent 
training program on physical performance and muscle quality in older 
adults: a quasi-experimental study. Int J Environ Res Public Health. 
2023;20:222. https://​doi.​org/​10.​3390/​ijerp​h2001​0222.

	 33.	 Ackermans LLGC, Rabou J, Basrai M, Schweinlin A, Bischoff SC, Cussenot 
O, et al. Screening, diagnosis and monitoring of sarcopenia: When to 
use which tool? Clin Nutr ESPEN. 2022;48:36–44. https://​doi.​org/​10.​
1016/j.​clnesp.​2022.​01.​027.

	 34.	 Sánchez Barrancos IM, Ruiz Serrano AL, González Santisteban R, Manso 
García S, Hernández Rodríguez T, Lozano Gago P, et al. Utilidad y fiabi-
lidad de la ecografía clínica musculoesquelética en medicina familiar 
(1): rodilla, hombro y entesis. Aten Primaria. 2018;50:629–43. https://​doi.​
org/​10.​1016/j.​aprim.​2018.​07.​010.

	 35.	 Price KL, Earthman CP. Update on body composition tools in clinical 
settings: computed tomography, ultrasound, and bioimpedance appli-
cations for assessment and monitoring. Eur J Clin Nutr. 2019;73:187–93. 
https://​doi.​org/​10.​1038/​s41430-​018-​0360-2.

	 36.	 Calleja Gonzalez J, Marqués-Jiménez D, Jones M, Valdivielso F, Delextrat 
A, Mielgo-Ayuso J, et al. Muscle recovery after exercise, training and 
competition: physiological indicators and non-invasive monitoring 
techniques. 2020.

	 37.	 Chianca V, Albano D, Messina C, Gitto S, Ruffo G, Guarino S, et al. Sar-
copenia: imaging assessment and clinical application. Abdom Radiol. 
2022;47:3205–16. https://​doi.​org/​10.​1007/​s00261-​021-​03294-3.

	 38.	 Giovannini S, Brau F, Forino R, Berti A, D’Ignazio F, Loreti C, et al. Sarco-
penia: diagnosis and management, state of the art and contribution 
of ultrasound. J Clin Med. 2021;10:5552. https://​doi.​org/​10.​3390/​jcm10​
235552.

	 39.	 Oba H, Matsui Y, Arai H, Watanabe T, Iida H, Mizuno T, et al. Evalua-
tion of muscle quality and quantity for the assessment of sarcopenia 
using mid-thigh computed tomography: a cohort study. BMC Geriatr. 
2021;21:239. https://​doi.​org/​10.​1186/​s12877-​021-​02187-w.

	 40.	 Tagliafico AS, Bignotti B, Torri L, Rossi F. Sarcopenia: how to measure, 
when and why. Radiol Med. 2022;127:228–37. https://​doi.​org/​10.​1007/​
s11547-​022-​01450-3.

	 41.	 Huber FA, Grande FD, Rizzo S, Guglielmi G, Guggenberger R. MRI in the 
assessment of adipose tissues and muscle composition: how to use it. 
Quant Imaging Med Surg. 2020;10:1636649–1631649. https://​doi.​org/​
10.​21037/​qims.​2020.​02.​06.

	 42.	 Engelke K, Chaudry O, Gast L, Eldib MAB, Wang L, Laredo J-D, et al. 
Magnetic resonance imaging techniques for the quantitative analysis 
of skeletal muscle: State of the art. J Orthopaed Transl. 2023;42:57–72. 
https://​doi.​org/​10.​1016/j.​jot.​2023.​07.​005.

	 43.	 Wilhelm E, Rech A, Minozzo F, Botton C, Radaelli R, Teixeira B, et al. 
Concurrent strength and endurance training exercise sequence does 
not affect neuromuscular adaptations in older men. Exp Gerontol. 
2014;60:207–14. https://​doi.​org/​10.​1016/j.​exger.​2014.​11.​007.

	 44.	 Albano D, Messina C, Vitale J, Sconfienza LM. Imaging of sarcopenia: old 
evidence and new insights. Eur Radiol. 2020;30:2199–208. https://​doi.​
org/​10.​1007/​s00330-​019-​06573-2.

	 45.	 Blake GM, Fogelman I. The role of DXA bone density scans in the diag-
nosis and treatment of osteoporosis. Postgrad Med J. 2007;83:509–17. 
https://​doi.​org/​10.​1136/​pgmj.​2007.​057505.

	 46.	 Jain RK, Vokes T. Dual-energy X-ray Absorptiometry. J Clin Densitom. 
2017;20:291–303. https://​doi.​org/​10.​1016/j.​jocd.​2017.​06.​014.

	 47.	 Scafoglieri A, Clarys JP. Dual energy X-ray absorptiometry: gold standard 
for muscle mass? J Cachexia Sarcopenia Muscle. 2018;9:786–7. https://​
doi.​org/​10.​1002/​jcsm.​12308.

	 48.	 Virto N, Río X, Angulo-Garay G, Molina RG, Céspedes AA, Zamora EBC, 
et al. Development of continuous assessment of muscle quality and 
frailty in older patients using multiparametric combinations of ultra-
sound and blood biomarkers: protocol for the ECOFRAIL study. JMIR 
Res Protoc. 2024;13:e50325. https://​doi.​org/​10.​2196/​50325.

	 49.	 Xie W-Q, Xiao G-L, Hu P-W, He Y-Q, Lv S, Xiao W-F. Possible sarcopenia: 
early screening and intervention-narrative review. Ann Palliat Med. 
2020;9:4283293–4293. https://​doi.​org/​10.​21037/​apm-​20-​967.

	 50.	 Perkisas S, Baudry S, Bauer J, Beckwee D, De Cock A-M, Hobbelen H, 
et al. Application of ultrasound for muscle assessment in sarcopenia: 
towards standardized measurements. European Geriatric Medicine. 
2018;9:739–57. https://​doi.​org/​10.​1007/​s41999-​018-​0104-9.

	 51.	 Ramírez-Fuentes C, Mínguez-Blasco P, Ostiz F, Sánchez-Rodríguez D, 
Messaggi-Sartor M, Macías R, et al. Ultrasound assessment of rectus 
femoris muscle in rehabilitation patients with chronic obstructive pul-
monary disease screened for sarcopenia: correlation of muscle size with 
quadriceps strength and fat-free mass. Eur Geriatr Med. 2019;10:89–97. 
https://​doi.​org/​10.​1007/​s41999-​018-​0130-7.

	 52.	 Mourtzakis M, Parry S, Connolly B, Puthucheary Z. Skeletal muscle ultra-
sound in critical care: a tool in need of translation. Ann Am Thorac Soc. 
2017;14:1495–503. https://​doi.​org/​10.​1513/​Annal​sATS.​201612-​967PS.

	 53.	 Nagae M, Umegaki H, Yoshiko A, Fujita K. Muscle ultrasound and its 
application to point-of-care ultrasonography: a narrative review. Ann 
Med. 2023;55:190–7. https://​doi.​org/​10.​1080/​07853​890.​2022.​21578​71.

	 54.	 Dallaway A, Kite C, Griffen C, Duncan M, Tallis J, Renshaw D, et al. Age-
related degeneration of the lumbar paravertebral muscles: Systematic 
review and three-level meta-regression. Exp Gerontol. 2020;133: 
110856. https://​doi.​org/​10.​1016/j.​exger.​2020.​110856.

	 55.	 Dallaway A, Hattersley J, Diokno M, Tallis J, Renshaw D, Wilson A, et al. 
Age-related degeneration of lumbar muscle morphology in healthy 
younger versus older men. Aging Male. 2020;23:1583–97. https://​doi.​
org/​10.​1080/​13685​538.​2021.​18781​30.

	 56.	 Šimunič B, Pišot R, Rittweger J, Degens H. Age-related slowing of con-
tractile properties differs between power, endurance, and nonathletes: 
a tensiomyographic assessment. J Gerontol: Ser A. 2018;73:1602–8. 
https://​doi.​org/​10.​1093/​gerona/​gly069.

	 57.	 Pus K, Paravlic AH, Šimunič B. The use of tensiomyography in older 
adults: a systematic review. Front Physiol. 2023;14:1213993.  https://​doi.​
org/​10.​3389/​fphys.​2023.​12139​93.

	 58.	 Garcia-Bernal M-I, Heredia-Rizo AM, Gonzalez-Garcia P, Cortés-Vega 
M-D, Casuso-Holgado MJ. Validity and reliability of myotonometry 
for assessing muscle viscoelastic properties in patients with stroke: a 
systematic review and meta-analysis. Sci Rep. 2021;11:5062. https://​doi.​
org/​10.​1038/​s41598-​021-​84656-1.

	 59.	 Sergi G, De Rui M, Veronese N, Bolzetta F, Berton L, Carraro S, et al. 
Assessing appendicular skeletal muscle mass with bioelectrical 
impedance analysis in free-living Caucasian older adults. Clin Nutr. 
2015;34:667–73. https://​doi.​org/​10.​1016/j.​clnu.​2014.​07.​010.

	 60.	 Di Vincenzo O, Marra M, Di Gregorio A, Pasanisi F, Scalfi L. Bioelectrical 
impedance analysis (BIA) -derived phase angle in sarcopenia: a system-
atic review. Clin Nutr. 2021;40:3052–61. https://​doi.​org/​10.​1016/j.​clnu.​
2020.​10.​048.

	 61.	 Page MJ, McKenzie JE, Bossuyt PM, Boutron I, Hoffmann TC, Mulrow CD, 
et al. The PRISMA 2020 statement: an updated guideline for reporting 
systematic reviews. BMJ. 2021;372: n71. https://​doi.​org/​10.​1136/​bmj.​
n71.

https://doi.org/10.14814/phy2.15339
https://doi.org/10.1016/j.exger.2021.111345
https://doi.org/10.1016/j.exger.2021.111345
https://doi.org/10.1007/s40279-018-1018-x
https://doi.org/10.1007/s40279-018-1018-x
https://doi.org/10.1016/j.ijnss.2017.09.004
https://doi.org/10.1016/j.ijnss.2017.09.004
https://doi.org/10.1038/s41392-022-01233-2
https://doi.org/10.1093/ageing/afy169
https://doi.org/10.1016/j.jamda.2023.02.012
https://doi.org/10.1016/j.jamda.2023.02.012
https://doi.org/10.3390/ijerph20010222
https://doi.org/10.1016/j.clnesp.2022.01.027
https://doi.org/10.1016/j.clnesp.2022.01.027
https://doi.org/10.1016/j.aprim.2018.07.010
https://doi.org/10.1016/j.aprim.2018.07.010
https://doi.org/10.1038/s41430-018-0360-2
https://doi.org/10.1007/s00261-021-03294-3
https://doi.org/10.3390/jcm10235552
https://doi.org/10.3390/jcm10235552
https://doi.org/10.1186/s12877-021-02187-w
https://doi.org/10.1007/s11547-022-01450-3
https://doi.org/10.1007/s11547-022-01450-3
https://doi.org/10.21037/qims.2020.02.06
https://doi.org/10.21037/qims.2020.02.06
https://doi.org/10.1016/j.jot.2023.07.005
https://doi.org/10.1016/j.exger.2014.11.007
https://doi.org/10.1007/s00330-019-06573-2
https://doi.org/10.1007/s00330-019-06573-2
https://doi.org/10.1136/pgmj.2007.057505
https://doi.org/10.1016/j.jocd.2017.06.014
https://doi.org/10.1002/jcsm.12308
https://doi.org/10.1002/jcsm.12308
https://doi.org/10.2196/50325
https://doi.org/10.21037/apm-20-967
https://doi.org/10.1007/s41999-018-0104-9
https://doi.org/10.1007/s41999-018-0130-7
https://doi.org/10.1513/AnnalsATS.201612-967PS
https://doi.org/10.1080/07853890.2022.2157871
https://doi.org/10.1016/j.exger.2020.110856
https://doi.org/10.1080/13685538.2021.1878130
https://doi.org/10.1080/13685538.2021.1878130
https://doi.org/10.1093/gerona/gly069
https://doi.org/10.3389/fphys.2023.1213993
https://doi.org/10.3389/fphys.2023.1213993
https://doi.org/10.1038/s41598-021-84656-1
https://doi.org/10.1038/s41598-021-84656-1
https://doi.org/10.1016/j.clnu.2014.07.010
https://doi.org/10.1016/j.clnu.2020.10.048
https://doi.org/10.1016/j.clnu.2020.10.048
https://doi.org/10.1136/bmj.n71
https://doi.org/10.1136/bmj.n71


Page 17 of 19Virto et al. BMC Geriatrics          (2024) 24:642 	

	 62.	 Liberati A, Altman DG, Tetzlaff J, Mulrow C, Gøtzsche PC, Ioannidis JPA, 
et al. The PRISMA statement for reporting systematic reviews and meta-
analyses of studies that evaluate health care interventions: explanation 
and elaboration. J Clin Epidemiol. 2009;62:e1-34. https://​doi.​org/​10.​
1016/j.​jclin​epi.​2009.​06.​006.

	 63.	 Maher CG, Sherrington C, Herbert RD, Moseley AM, Elkins M. Reliability 
of the PEDro scale for rating quality of randomized controlled trials. 
Phys Ther. 2003;83:713–21. https://​doi.​org/​10.​1093/​ptj/​83.8.​713.

	 64.	 Ferreira González I, Urrútia G, Alonso-Coello P. Revisiones sistemáticas 
y metaanálisis: bases conceptuales e interpretación. Rev Esp Cardiol. 
2011;64:688–96. https://​doi.​org/​10.​1016/j.​recesp.​2011.​03.​029.

	 65.	 Baptista RR, Onzi E, Goulart N, Santos LD, Makarewicz G, Vaz M. Effects 
of concentric versus eccentric strength training on the Elderly’s 
Knee extensor structure and function. J Exer Physiology Online. 
2016;19:120–32.

	 66.	 Bruseghini P, Capelli C, Calabria E, Rossi A, Tam E. Effects of High-Inten-
sity Interval Training and isoinertial training on leg extensors muscle 
function, structure, and intermuscular adipose tissue in older adults. 
Frontiers in Physiology 2019;10. https://​doi.​org/​10.​3389/​fphys.​2019.​
01260.

	 67.	 Cepeda CCP, Lodovico A, Fowler N, Rodacki ALF. Effect of an eight-
week ballroom dancing program on muscle architecture in older adult 
females. J Aging Phys Act. 2015;23:607–12. https://​doi.​org/​10.​1123/​japa.​
2014-​0101.

	 68.	 Da Boit M, Sibson R, Meakin J, Aspden R, Thies F, Mangoni A, et al. Sex 
differences in the response to resistance exercise training in older 
people. Physiol Rep 2016;4. https://​doi.​org/​10.​14814/​phy2.​12834.

	 69.	 Franchi MV, Monti E, Carter A, Quinlan JI, Herrod PJJ, Reeves ND, et al. 
Bouncing Back! Counteracting muscle aging with plyometric muscle 
loading. Front Physiol. 2019;10:178. https://​doi.​org/​10.​3389/​fphys.​2019.​
00178.

	 70.	 Gallo LH, Rodrigues EV, Filho JM, da Silva JB, Harris-Love MO, Gomes 
ARS. Effects of virtual dance exercise on skeletal muscle architecture 
and function of community dwelling older women. J Musculoskelet 
Neuronal Interact. 2019;19:50–61.

	 71.	 Goodpaster BH, Chomentowski P, Ward BK, Rossi A, Glynn NW, Del-
monico MJ, et al. Effects of physical activity on strength and skeletal 
muscle fat infiltration in older adults: a randomized controlled trial. J 
Appl Physiol. 2008;105:1498–503. https://​doi.​org/​10.​1152/​jappl​physi​ol.​
90425.​2008.

	 72.	 Greig C, Gray C, Rankin D, Young A, Mann V, Noble B, et al. Blunting of 
adaptive responses to resistance exercise training in women over 75 y. 
Exp Gerontol. 2011;46:884–90. https://​doi.​org/​10.​1016/j.​exger.​2011.​07.​
010.

	 73.	 Hill MW, Roberts M, Price MJ, Kay AD. Effects of flywheel training with 
eccentric overload on standing balance, mobility, physical function, 
muscle thickness, and muscle quality in older adults. J Strength Condi-
tion Res. 2022;36:3190. https://​doi.​org/​10.​1519/​JSC.​00000​00000​004006.

	 74.	 Jacobs JL, Marcus RL, Morrell G, LaStayo P. Resistance Exercise with 
Older Fallers: Its Impact on Intermuscular Adipose Tissue. Biomed Res 
Int. 2014;2014:e398960. https://​doi.​org/​10.​1155/​2014/​398960.

	 75.	 Konopka A, Wolff C, Suer M, Harber M. Relationship between inter-
muscular adipose tissue infiltration and myostatin before and after 
aerobic exercise training. Am J Physiol-Regul Integr Compar Physiol. 
2018;315:R461–8. https://​doi.​org/​10.​1152/​ajpre​gu.​00030.​2018.

	 76.	 Lopez P, Crosby B, Robetti B, Turella D, Weber T, de Oliveira M, et al. 
Effects of an 8-week resistance training intervention on plantar flexor 
muscle quality and functional capacity in older women: A randomised 
controlled trial. Exper Gerontol 2020;138. https://​doi.​org/​10.​1016/j.​
exger.​2020.​111003.

	 77.	 Lopez-Lopez S, Pareja-Galeano H, Almazan-Polo J, Cotteret C, Tellez-
Gonzalez P, Calvo-Lobo C, et al. Quantitative ultrasound changes in 
echotexture and functional parameters after a multicomponent train-
ing program in pre-frailty individuals: a pilot randomized clinical trial. 
Healthcare 2021;9. https://​doi.​org/​10.​3390/​healt​hcare​91012​79.

	 78.	 Mollà-Casanova S, Muñoz-Gómez E, Sempere-Rubio N, Inglés M, 
Aguilar-Rodríguez M, Page Á, et al. Effect of virtual running with exer-
cise on functionality in pre-frail and frail elderly people: randomized 
clinical trial. Aging Clin Exp Res. 2023;35:1459–67. https://​doi.​org/​10.​
1007/​s40520-​023-​02414-x.

	 79.	 Nunes J, Ribeiro A, Silva A, Schoenfeld B, dos Santos L, Cunha P, et al. 
Improvements in phase angle are related with muscle quality index 
after resistance training in older women. J Aging Phys Act. 2019;27:515–
20. https://​doi.​org/​10.​1123/​japa.​2018-​0259.

	 80.	 Radaelli R, Botton CE, Wilhelm EN, Bottaro M, Lacerda F, Gaya A, et al. 
Low- and high-volume strength training induces similar neuromuscu-
lar improvements in muscle quality in elderly women. Exp Gerontol. 
2013;48:710–6. https://​doi.​org/​10.​1016/j.​exger.​2013.​04.​003.

	 81.	 Radaelli R, Botton CE, Wilhelm EN, Bottaro M, Brown LE, Lacerda F, et al. 
Time course of low- and high-volume strength training on neuromus-
cular adaptations and muscle quality in older women. Age (Dordr). 
2014;36:881–92. https://​doi.​org/​10.​1007/​s11357-​013-​9611-2.

	 82.	 Radaelli R, Brusco CM, Lopez P, Rech A, Machado CLF, Grazioli R, et al. 
Muscle quality and functionality in older women improve similarly 
with muscle power training using one or three sets. Exp Gerontol. 
2019;128:110745. https://​doi.​org/​10.​1016/j.​exger.​2019.​110745.

	 83.	 Raj I, Bird S, Westfold B, Shield A. Effects of eccentrically biased versus 
conventional weight training in older adults. Med Sci Sports Exerc. 
2012;44:1167–76. https://​doi.​org/​10.​1249/​MSS.​0b013​e3182​442ecd.

	 84.	 Rodriguez-Lopez C, Alcazar J, Sanchez-Martin C, Baltasar-Fernandez I, 
Ara I, Csapo R, et al. Neuromuscular adaptations after 12 weeks of light- 
vs heavy-load power-oriented resistance training in older adults. Scand 
J Med Sci Sports. 2022;32:324–37. https://​doi.​org/​10.​1111/​sms.​14073.

	 85.	 Scanlon TC, Fragala MS, Stout JR, Emerson NS, Beyer KS, Oliveira LP, et al. 
Muscle architecture and strength: Adaptations to short-term resistance 
training in older adults. Muscle Nerve. 2014;49:584–92. https://​doi.​org/​
10.​1002/​mus.​23969.

	 86.	 Suetta C, Andersen J, Dalgas U, Berget J, Koskinen S, Aagaard P, et al. 
Resistance training induces qualitative changes in muscle morphol-
ogy, muscle architecture, and muscle function in elderly postoperative 
patients. J Appl Physiol. 2008;105:180–6. https://​doi.​org/​10.​1152/​jappl​
physi​ol.​01354.​2007.

	 87.	 Taaffe DR, Henwood TR, Nalls MA, Walker DG, Lang TF, Harris TB. Altera-
tions in muscle attenuation following detraining and retraining in 
resistance-trained older adults. 2009. https://​doi.​org/​10.​1159/​00018​
2084

	 88.	 Tanton L, Cappaert T, Gordon P, Zoeller R, Angelopoulos T, Price T, et al. 
Strength, size, and muscle quality in the upper arm following unilateral 
training in younger and older males and females. Clin Med Insights-
Arthr Musculoskelet Disord. 2009;2:9–18.

	 89.	 Teodoro J, Izquierdo M, da Silva L, Baroni B, Grazioli R, Lopez P, et al. 
Effects of long-term concurrent training to failure or not in muscle 
power output, muscle quality and cardiometabolic risk factors in older 
men: A secondary analysis of a randomized clinical trial. Exp Gerontol 
2020;139. https://​doi.​org/​10.​1016/j.​exger.​2020.​111023.

	 90.	 Tracy B, Ivey F, Hurlbut D, Martel G, Lemmer J, Siegel E, et al. Muscle 
quality. II. Effects of strength training in 65- to 75-yr-old men and 
women. J Appl Physiol. 1999;86:195–201. https://​doi.​org/​10.​1152/​jappl.​
1999.​86.1.​195.

	 91.	 Vojciechowski AS, Silva CTDS, Rodrigues EV, Gallo LH, Melo Filho J, 
Gomes ARS. Does physical dance training with virtual games change 
muscle quality of community-dwelling older women? Games Health J. 
2021;10:391–9. https://​doi.​org/​10.​1089/​g4h.​2020.​0223.

	 92.	 Watanabe Y, Madarame H, Ogasawara R, Nakazato K, Ishii N. Effect of 
very low-intensity resistance training with slow movement on muscle 
size and strength in healthy older adults. Clin Physiol Functional Imag-
ing. 2014;34:463–70. https://​doi.​org/​10.​1111/​cpf.​12117.

	 93.	 Yoshiko A, Kaji T, Sugiyama H, Koike T, Oshida Y, Akima H. Twenty-four 
months’ resistance and endurance training improves muscle size and 
physical functions but not muscle quality in older adults requiring 
long-term care. J Nutr Health Aging. 2019;23:564–70. https://​doi.​org/​10.​
1007/​s12603-​019-​1208-8.

	 94.	 Yoshiko A, Tomita A, Ando R, Ogawa M, Kondo S, Saito A, et al. Effects 
of 10-week walking and walking with home-based resistance training 
on muscle quality, muscle size, and physical functional tests in healthy 
older individuals. Eur Rev Aging Phys Act. 2018;15:13. https://​doi.​org/​10.​
1186/​s11556-​018-​0201-2.

	 95.	 Yoshiko A, Kaji T, Kozuka T, Sawazaki T, Akima H. Evaluation of rehabilita-
tion exercise effects by using gradation-based skeletal muscle echo 
intensity in older individuals: a one-group before-and-after trial study. 
BMC Geriatr. 2021;21:485. https://​doi.​org/​10.​1186/​s12877-​021-​02423-3.

https://doi.org/10.1016/j.jclinepi.2009.06.006
https://doi.org/10.1016/j.jclinepi.2009.06.006
https://doi.org/10.1093/ptj/83.8.713
https://doi.org/10.1016/j.recesp.2011.03.029
https://doi.org/10.3389/fphys.2019.01260
https://doi.org/10.3389/fphys.2019.01260
https://doi.org/10.1123/japa.2014-0101
https://doi.org/10.1123/japa.2014-0101
https://doi.org/10.14814/phy2.12834
https://doi.org/10.3389/fphys.2019.00178
https://doi.org/10.3389/fphys.2019.00178
https://doi.org/10.1152/japplphysiol.90425.2008
https://doi.org/10.1152/japplphysiol.90425.2008
https://doi.org/10.1016/j.exger.2011.07.010
https://doi.org/10.1016/j.exger.2011.07.010
https://doi.org/10.1519/JSC.0000000000004006
https://doi.org/10.1155/2014/398960
https://doi.org/10.1152/ajpregu.00030.2018
https://doi.org/10.1016/j.exger.2020.111003
https://doi.org/10.1016/j.exger.2020.111003
https://doi.org/10.3390/healthcare9101279
https://doi.org/10.1007/s40520-023-02414-x
https://doi.org/10.1007/s40520-023-02414-x
https://doi.org/10.1123/japa.2018-0259
https://doi.org/10.1016/j.exger.2013.04.003
https://doi.org/10.1007/s11357-013-9611-2
https://doi.org/10.1016/j.exger.2019.110745
https://doi.org/10.1249/MSS.0b013e3182442ecd
https://doi.org/10.1111/sms.14073
https://doi.org/10.1002/mus.23969
https://doi.org/10.1002/mus.23969
https://doi.org/10.1152/japplphysiol.01354.2007
https://doi.org/10.1152/japplphysiol.01354.2007
https://doi.org/10.1159/000182084
https://doi.org/10.1159/000182084
https://doi.org/10.1016/j.exger.2020.111023
https://doi.org/10.1152/jappl.1999.86.1.195
https://doi.org/10.1152/jappl.1999.86.1.195
https://doi.org/10.1089/g4h.2020.0223
https://doi.org/10.1111/cpf.12117
https://doi.org/10.1007/s12603-019-1208-8
https://doi.org/10.1007/s12603-019-1208-8
https://doi.org/10.1186/s11556-018-0201-2
https://doi.org/10.1186/s11556-018-0201-2
https://doi.org/10.1186/s12877-021-02423-3


Page 18 of 19Virto et al. BMC Geriatrics          (2024) 24:642 

	 96.	 Zubac D, Paravlic A, Koren K, Felicita U, Simunic B. Plyometric exercise 
improves jumping performance and skeletal muscle contractile proper-
ties in seniors. J Musculoskelet Neuronal Interact. 2019;19:38–49.

	 97.	 Correa-de-Araujo R, Harris-Love MO, Miljkovic I, Fragala MS, Anthony 
BW, Manini TM. The need for standardized assessment of muscle quality 
in skeletal muscle function deficit and other aging-related muscle 
dysfunctions: a symposium report. Front Physiol. 2017;8:87. https://​doi.​
org/​10.​3389/​fphys.​2017.​00087.

	 98.	 Niklasson E, Borga M, Dahlqvist Leinhard O, Widholm P, Andersson DP, 
Wiik A, et al. Assessment of anterior thigh muscle size and fat infiltration 
using single-slice CT imaging versus automated MRI analysis in adults. 
BJR. 2022;95:20211094. https://​doi.​org/​10.​1259/​bjr.​20211​094.

	 99.	 Faron A, Sprinkart AM, Kuetting DLR, Feisst A, Isaak A, Endler C, 
et al. Body composition analysis using CT and MRI: intra-individual 
intermodal comparison of muscle mass and myosteatosis. Sci Rep. 
2020;10:11765. https://​doi.​org/​10.​1038/​s41598-​020-​68797-3.

	100.	 Sconfienza LM, Albano D, Allen G, Bazzocchi A, Bignotti B, Chianca 
V, et al. Clinical indications for musculoskeletal ultrasound updated 
in 2017 by European Society of Musculoskeletal Radiology (ESSR) 
consensus. Eur Radiol. 2018;28:5338–51. https://​doi.​org/​10.​1007/​
s00330-​018-​5474-3.

	101.	 Casey P, Alasmar M, McLaughlin J, Ang Y, McPhee J, Heire P, et al. The 
current use of ultrasound to measure skeletal muscle and its ability to 
predict clinical outcomes: a systematic review. J Cachexia Sarcopenia 
Muscle. 2022;13:2298–309. https://​doi.​org/​10.​1002/​jcsm.​13041.

	102.	 Nijholt W, Jager-Wittenaar H, Raj IS, van der Schans CP, Hobbelen H. 
Reliability and validity of ultrasound to estimate muscles: A compari-
son between different transducers and parameters. Clin Nutr ESPEN. 
2020;35:146–52. https://​doi.​org/​10.​1016/j.​clnesp.​2019.​10.​009.

	103.	 Norman K, Herpich C, Müller-Werdan U. Role of phase angle in older 
adults with focus on the geriatric syndromes sarcopenia and frailty. 
Rev Endocr Metab Disord. 2023;24:429–37. https://​doi.​org/​10.​1007/​
s11154-​022-​09772-3.

	104.	 Duarte Martins A, Paulo Brito J, Batalha N, Oliveira R, Parraca JA, Fer-
nandes O. Phase angle as a key marker of muscular and bone quality 
in community-dwelling independent older adults: A cross-sectional 
exploratory pilot study. Heliyon. 2023;9: e17593. https://​doi.​org/​10.​
1016/j.​heliy​on.​2023.​e17593.

	105.	 Čular D, Babić M, Zubac D, Kezić A, Macan I, Peyré-Tartaruga LA, et al. 
Tensiomyography: from muscle assessment to talent identification tool. 
Front Physiol. 2023;14:1163078. https://​doi.​org/​10.​3389/​fphys.​2023.​
11630​78.

	106.	 Lohr C, Schmidt T, Medina-Porqueres I, Braumann K-M, Reer R, Porthun 
J. Diagnostic accuracy, validity, and reliability of Tensiomyography 
to assess muscle function and exercise-induced fatigue in healthy 
participants. A systematic review with meta-analysis. J Electromyograph 
Kinesiol. 2019;47:65–87. https://​doi.​org/​10.​1016/j.​jelek​in.​2019.​05.​005.

	107.	 McGowen JM, Hoppes CW, Forsse JS, Albin SR, Abt J, Koppenhaver 
SL. The utility of myotonometry in musculoskeletal rehabilitation and 
human performance programming. J Athl Train. 2022. https://​doi.​org/​
10.​4085/​1062-​6050-​0616.​21.

	108.	 Morgan G, Martin R, Welch H, Williams L, Morris K. Objective assessment 
of stiffness in the gastrocnemius muscle in patients with symptomatic 
Achilles tendons. BMJ Open Sport Exerc Med. 2019;5: e000622. https://​
doi.​org/​10.​1136/​bmjsem-​2019-​000622.

	109.	 Ilahi S, T. Masi A, White A, Devos A, Henderson J, Nair K. Quantified 
biomechanical properties of lower lumbar myofascia in younger adults 
with chronic idiopathic low back pain and matched healthy controls. 
Clinical Biomechanics. 2020;73:78–85. https://​doi.​org/​10.​1016/j.​clinb​
iomech.​2019.​12.​026.

	110.	 Brazier J, Bishop C, Simons C, Antrobus M, Read PJ, Turner AN. Lower 
extremity stiffness: effects on performance and injury and implications 
for training. Strength Conditioning J. 2014;36:103–12. https://​doi.​org/​
10.​1519/​SSC.​00000​00000​000094.

	111.	 White A, Abbott H, Masi AT, Henderson J, Nair K. Biomechanical proper-
ties of low back myofascial tissue in younger adult ankylosing spon-
dylitis patients and matched healthy control subjects. Clin Biomech. 
2018;57:67–73. https://​doi.​org/​10.​1016/j.​clinb​iomech.​2018.​06.​006.

	112.	 Wilson MT, Ryan AMF, Vallance SR, Dias-Dougan A, Dugdale JH, Hunter 
AM, et al. Tensiomyography derived parameters reflect skeletal muscle 
architectural adaptations following 6-weeks of lower body resistance 

training. Front Physiol. 2019;10:1493. https://​doi.​org/​10.​3389/​fphys.​
2019.​01493.

	113.	 Wickiewicz TL, Roy RR, Powell PL, Perrine JJ, Edgerton VR. Muscle archi-
tecture and force-velocity relationships in humans. J Appl Physiol Respir 
Environ Exerc Physiol. 1984;57:435–43. https://​doi.​org/​10.​1152/​jappl.​
1984.​57.2.​435.

	114.	 Charles J, Kissane R, Hoehfurtner T, Bates KT. From fibre to function: are 
we accurately representing muscle architecture and performance? Biol 
Rev Camb Philos Soc. 2022;97:1640–76. https://​doi.​org/​10.​1111/​brv.​
12856.

	115.	 Wong V, Spitz RW, Bell ZW, Viana RB, Chatakondi RN, Abe T, et al. 
Exercise induced changes in echo intensity within the muscle: a 
brief review. J Ultrasound. 2020;23:457–72. https://​doi.​org/​10.​1007/​
s40477-​019-​00424-y.

	116.	 Fukumoto Y, Ikezoe T, Yamada Y, Tsukagoshi R, Nakamura M, Mori N, 
et al. Skeletal muscle quality assessed from echo intensity is associated 
with muscle strength of middle-aged and elderly persons. Eur J Appl 
Physiol. 2012;112:1519–25. https://​doi.​org/​10.​1007/​s00421-​011-​2099-5.

	117.	 Ema R, Akagi R, Wakahara T, Kawakami Y. Training-induced changes in 
architecture of human skeletal muscles: Current evidence and unre-
solved issues. J Phys Fitness Sports Med. 2016;5:37–46. https://​doi.​org/​
10.​7600/​jpfsm.5.​37.

	118.	 Cordeiro Lde S, Linhares DG, Barros dos Santos AO, Lima dos Santos L, 
de Castro JBP, Vale RG de S. Influence of resistance training on muscle 
architecture in older adults: A systematic review and meta-analysis of 
randomized controlled trials. Arch Gerontol Geriatr. 2023;112:105020. 
https://​doi.​org/​10.​1016/j.​archg​er.​2023.​105020.

	119.	 Létocart AJ, Mabesoone F, Charleux F, Couppé C, Svensson RB, Marin F, 
et al. Muscles adaptation to aging and training: architectural changes 
– a randomised trial. BMC Geriatr. 2021;21:48. https://​doi.​org/​10.​1186/​
s12877-​020-​02000-0.

	120.	 Vezzoli A, Mrakic-Sposta S, Montorsi M, Porcelli S, Vago P, Cereda F, 
et al. Moderate intensity resistive training reduces oxidative stress and 
improves muscle mass and function in older individuals. Antioxidants. 
2019;8:431. https://​doi.​org/​10.​3390/​antio​x8100​431.

	121.	 Blazevich AJ, Cannavan D, Coleman DR, Horne S. Influence of concen-
tric and eccentric resistance training on architectural adaptation in 
human quadriceps muscles. J Appl Physiol. 2007;103:1565–75. https://​
doi.​org/​10.​1152/​jappl​physi​ol.​00578.​2007.

	122.	 Lindberg K, Lohne-Seiler H, Fosstveit SH, Sibayan EE, Fjeller JS, Løvold 
S, et al. Effectiveness of individualized training based on force–velocity 
profiling on physical function in older men. Scand J Med Sci Sports. 
2022;32:1013–25. https://​doi.​org/​10.​1111/​sms.​14157.

	123.	 Din USU, Brook MS, Selby A, Quinlan J, Boereboom C, Abdulla H, et al. A 
double-blind placebo controlled trial into the impacts of HMB supple-
mentation and exercise on free-living muscle protein synthesis, muscle 
mass and function, in older adults. Clin Nutr. 2019;38:2071–8. https://​
doi.​org/​10.​1016/j.​clnu.​2018.​09.​025.

	124.	 Allison SJ, Brooke-Wavell K, Folland J. High and odd impact exercise 
training improved physical function and fall risk factors in community-
dwelling older men. J Musculoskelet Neuronal Interact. 2018;18:100–7.

	125.	 Rantalainen T, Hoffrén M, Linnamo V, Heinonen A, Komi PV, Avela J, et al. 
Three-month bilateral hopping intervention is ineffective in initiating 
bone biomarker response in healthy elderly men. Eur J Appl Physiol. 
2011;111:2155–62. https://​doi.​org/​10.​1007/​s00421-​011-​1849-8.

	126.	 Englund DA, Kirn DR, Koochek A, Zhu H, Travison TG, Reid KF, et al. 
Nutritional supplementation with physical activity improves muscle 
composition in mobility-limited older adults, the vive2 study: a 
randomized, double-blind, placebo-controlled trial. J Gerontol: Ser A. 
2018;73:95–101. https://​doi.​org/​10.​1093/​gerona/​glx141.

	127.	 Manini TM, Buford TW, Lott DJ, Vandenborne K, Daniels MJ, Knaggs JD, 
et al. Effect of dietary restriction and exercise on lower extremity tissue 
compartments in obese, older women: a pilot study. J Gerontol A Biol 
Sci Med Sci. 2014;69:101–8. https://​doi.​org/​10.​1093/​gerona/​gls337.

	128.	 Marcus RL, Addison O, Kidde JP, Dibble LE, Lastayo PC. Skeletal muscle 
fat infiltration: impact of age, inactivity, and exercise. J Nutr Health 
Aging. 2010;14:362–6. https://​doi.​org/​10.​1007/​s12603-​010-​0081-2.

	129.	 Walts CT, Hanson ED, Delmonico MJ, Yao L, Wang MQ, Hurley BF. Do sex 
or race differences influence strength training effects on muscle or fat? 
Med Sci Sports Exerc. 2008;40:669–76. https://​doi.​org/​10.​1249/​MSS.​
0b013​e3181​61aa82.

https://doi.org/10.3389/fphys.2017.00087
https://doi.org/10.3389/fphys.2017.00087
https://doi.org/10.1259/bjr.20211094
https://doi.org/10.1038/s41598-020-68797-3
https://doi.org/10.1007/s00330-018-5474-3
https://doi.org/10.1007/s00330-018-5474-3
https://doi.org/10.1002/jcsm.13041
https://doi.org/10.1016/j.clnesp.2019.10.009
https://doi.org/10.1007/s11154-022-09772-3
https://doi.org/10.1007/s11154-022-09772-3
https://doi.org/10.1016/j.heliyon.2023.e17593
https://doi.org/10.1016/j.heliyon.2023.e17593
https://doi.org/10.3389/fphys.2023.1163078
https://doi.org/10.3389/fphys.2023.1163078
https://doi.org/10.1016/j.jelekin.2019.05.005
https://doi.org/10.4085/1062-6050-0616.21
https://doi.org/10.4085/1062-6050-0616.21
https://doi.org/10.1136/bmjsem-2019-000622
https://doi.org/10.1136/bmjsem-2019-000622
https://doi.org/10.1016/j.clinbiomech.2019.12.026
https://doi.org/10.1016/j.clinbiomech.2019.12.026
https://doi.org/10.1519/SSC.0000000000000094
https://doi.org/10.1519/SSC.0000000000000094
https://doi.org/10.1016/j.clinbiomech.2018.06.006
https://doi.org/10.3389/fphys.2019.01493
https://doi.org/10.3389/fphys.2019.01493
https://doi.org/10.1152/jappl.1984.57.2.435
https://doi.org/10.1152/jappl.1984.57.2.435
https://doi.org/10.1111/brv.12856
https://doi.org/10.1111/brv.12856
https://doi.org/10.1007/s40477-019-00424-y
https://doi.org/10.1007/s40477-019-00424-y
https://doi.org/10.1007/s00421-011-2099-5
https://doi.org/10.7600/jpfsm.5.37
https://doi.org/10.7600/jpfsm.5.37
https://doi.org/10.1016/j.archger.2023.105020
https://doi.org/10.1186/s12877-020-02000-0
https://doi.org/10.1186/s12877-020-02000-0
https://doi.org/10.3390/antiox8100431
https://doi.org/10.1152/japplphysiol.00578.2007
https://doi.org/10.1152/japplphysiol.00578.2007
https://doi.org/10.1111/sms.14157
https://doi.org/10.1016/j.clnu.2018.09.025
https://doi.org/10.1016/j.clnu.2018.09.025
https://doi.org/10.1007/s00421-011-1849-8
https://doi.org/10.1093/gerona/glx141
https://doi.org/10.1093/gerona/gls337
https://doi.org/10.1007/s12603-010-0081-2
https://doi.org/10.1249/MSS.0b013e318161aa82
https://doi.org/10.1249/MSS.0b013e318161aa82


Page 19 of 19Virto et al. BMC Geriatrics          (2024) 24:642 	

	130.	 Otsuka Y, Yamada Y, Maeda A, Izumo T, Rogi T, Shibata H, et al. Effects of 
resistance training intensity on muscle quantity/quality in middle-aged 
and older people: a randomized controlled trial. J Cachexia Sarcopenia 
Muscle. 2022;13:894–908. https://​doi.​org/​10.​1002/​jcsm.​12941.

	131.	 Kalapotharakos VI, Michalopoulou M, Godolias G, Tokmakidis SP, Malliou 
PV, Gourgoulis V. The effects of high- and moderate-resistance training 
on muscle function in the elderly. J Aging Phys Act. 2004;12:131–43. 
https://​doi.​org/​10.​1123/​japa.​12.2.​131.

	132.	 Madrid DA, Beavers KM, Walkup MP, Ambrosius WT, Rejeski WJ, Marsh 
AP, et al. Effect of exercise modality and weight loss on changes in 
muscle and bone quality in older adults with obesity. Exp Gerontol. 
2023;174:112126. https://​doi.​org/​10.​1016/j.​exger.​2023.​112126.

	133.	 Waters DL. Intermuscular adipose tissue: a brief review of etiology, 
association with physical function and weight loss in older adults. Ann 
Geriatr Med Res. 2019;23:3–8. https://​doi.​org/​10.​4235/​agmr.​19.​0001.

	134.	 Ikenaga M, Yamada Y, Kose Y, Morimura K, Higaki Y, Kiyonaga A, et al. 
Effects of a 12-week, short-interval, intermittent, low-intensity, slow-
jogging program on skeletal muscle, fat infiltration, and fitness in older 
adults: randomized controlled trial. Eur J Appl Physiol. 2017;117:7–15. 
https://​doi.​org/​10.​1007/​s00421-​016-​3493-9.

	135.	 Cadore EL, Pinto RS, Kruel LFM. Neuromuscular adaptations to strength 
and concurrent training in elderly men. Revista Brasileira de Cineantro-
pometria e Desempenho Humano. 2012;14:483–95. https://​doi.​org/​10.​
5007/​1980-​0037.​2012v​14n4p​483.

	136.	 Aas SN, Breit M, Karsrud S, Aase OJ, Rognlien SH, Cumming KT, et al. 
Musculoskeletal adaptations to strength training in frail elderly: a mat-
ter of quantity or quality? J Cachexia Sarcopenia Muscle. 2020;11:663–
77. https://​doi.​org/​10.​1002/​jcsm.​12543.

	137.	 Hunter GR, McCarthy JP, Bamman MM. Effects of resistance training 
on older adults. Sports Med. 2004;34:329–48. https://​doi.​org/​10.​2165/​
00007​256-​20043​4050-​00005.

	138.	 Wilson MT, Hunter AM, Fairweather M, Kerr S, Hamilton DL, Macgregor 
LJ. Enhanced skeletal muscle contractile function and corticospinal 
excitability precede strength and architectural adaptations during 
lower-limb resistance training. Eur J Appl Physiol. 2023;123:1911–28. 
https://​doi.​org/​10.​1007/​s00421-​023-​05201-8.

	139.	 Garcia-Manso J, Rodriguez-Matoso D, Sarmiento S, de Saa Y, Vaamonde 
D, Rodriguez-Ruiz D, et al. Effect of high-load and high-volume resist-
ance exercise on the tensiomyographic twitch response of biceps 
brachii. J Electromyogr Kinesiol. 2012;22:612–9. https://​doi.​org/​10.​
1016/j.​jelek​in.​2012.​01.​005.

	140.	 Kojić F, Ranisavljev I, Ćosić D, Popović D, Stojiljković S, Ilić V. Effects of 
resistance training on hypertrophy, strength and tensiomyography 
parameters of elbow flexors: role of eccentric phase duration. Biol 
Sport. 2021;38:587–94. https://​doi.​org/​10.​5114/​biols​port.​2021.​99323.

	141.	 Shin H-J, Kim S-H, Hahm S-C, Cho H-Y. Thermotherapy plus neck stabi-
lization exercise for chronic nonspecific neck pain in elderly: a single-
blinded randomized controlled trial. Int J Environ Res Public Health. 
2020;17:5572. https://​doi.​org/​10.​3390/​ijerp​h1715​5572.

	142.	 Chuang L, Wu C, Lin K. Reliability, validity, and responsiveness of 
myotonometric measurement of muscle tone, elasticity, and stiffness 
in patients with stroke. Arch Phys Med Rehabil. 2012;93:532–40. https://​
doi.​org/​10.​1016/j.​apmr.​2011.​09.​014.

	143.	 Thomas E, Ficarra S, Nakamura M, Paoli A, Bellafiore M, Palma A, 
et al. Effects of Different Long-Term Exercise Modalities on Tissue 
Stiffness. Sports Med- Open. 2022;8:71. https://​doi.​org/​10.​1186/​
s40798-​022-​00462-7.

	144.	 Sardinha LB, Rosa GB. Phase angle, muscle tissue, and resistance train-
ing. Rev Endocr Metab Disord. 2023;24:393–414. https://​doi.​org/​10.​
1007/​s11154-​023-​09791-8.

	145.	 Souza MF, Tomeleri CM, Ribeiro AS, Schoenfeld BJ, Silva AM, Sardinha 
LB, et al. Effect of resistance training on phase angle in older women: a 
randomized controlled trial. Scand J Med Sci Sports. 2017;27:1308–16. 
https://​doi.​org/​10.​1111/​sms.​12745.

	146.	 Herda AA, Nabavizadeh O. Short-term resistance training in older adults 
improves muscle quality: A randomized control trial. Exp Gerontol. 
2021;145: 111195. https://​doi.​org/​10.​1016/j.​exger.​2020.​111195.

	147.	 Correa C, LaRoche D, Cadore E, Reischak-Oliveira A, Bottaro M, Kruel L, 
et al. 3 Different Types of Strength Training in Older Women. Int J Sports 
Med. 2012;33:962–9. https://​doi.​org/​10.​1055/s-​0032-​13126​48.

	148.	 Akima H, Yoshiko A, Radaelli R, Ogawa M, Shimizu K, Tomita A, et al. 
Comparison of muscle quality and functional capacity between 
Japanese and Brazilian older individuals. PLoS ONE. 2020;15:e0243589. 
https://​doi.​org/​10.​1371/​journ​al.​pone.​02435​89.

	149.	 Paris MT, Mourtzakis M. Muscle composition analysis of ultrasound 
images: a narrative review of texture analysis. Ultrasound Med Biol. 
2021;47:880–95. https://​doi.​org/​10.​1016/j.​ultra​smedb​io.​2020.​12.​012.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub-
lished maps and institutional affiliations.

https://doi.org/10.1002/jcsm.12941
https://doi.org/10.1123/japa.12.2.131
https://doi.org/10.1016/j.exger.2023.112126
https://doi.org/10.4235/agmr.19.0001
https://doi.org/10.1007/s00421-016-3493-9
https://doi.org/10.5007/1980-0037.2012v14n4p483
https://doi.org/10.5007/1980-0037.2012v14n4p483
https://doi.org/10.1002/jcsm.12543
https://doi.org/10.2165/00007256-200434050-00005
https://doi.org/10.2165/00007256-200434050-00005
https://doi.org/10.1007/s00421-023-05201-8
https://doi.org/10.1016/j.jelekin.2012.01.005
https://doi.org/10.1016/j.jelekin.2012.01.005
https://doi.org/10.5114/biolsport.2021.99323
https://doi.org/10.3390/ijerph17155572
https://doi.org/10.1016/j.apmr.2011.09.014
https://doi.org/10.1016/j.apmr.2011.09.014
https://doi.org/10.1186/s40798-022-00462-7
https://doi.org/10.1186/s40798-022-00462-7
https://doi.org/10.1007/s11154-023-09791-8
https://doi.org/10.1007/s11154-023-09791-8
https://doi.org/10.1111/sms.12745
https://doi.org/10.1016/j.exger.2020.111195
https://doi.org/10.1055/s-0032-1312648
https://doi.org/10.1371/journal.pone.0243589
https://doi.org/10.1016/j.ultrasmedbio.2020.12.012

	Non invasive techniques for direct muscle quality assessment after exercise intervention in older adults: a systematic review
	Abstract 
	Background 
	Main text 
	Results 
	Conclusions 

	Introduction
	Methods
	Registration
	Procedures
	Eligibility criteria
	Literature search and screening process
	Data collection
	Risk of bias

	Results
	Study selection
	Risk of bias of the included studies
	Study characteristics

	Discussion
	Direct non-invasive muscle quality measurement tools
	Exercise effects on muscle quality
	Primary multisource parameters in muscle quality assessment research
	Trends in direct muscle quality assessment tools

	Conclusions
	Acknowledgements
	References


