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Background
Endometrial stromal sarcoma (ESS), derived from endo-
metrial stromal cells, accounts for approximately 1% of 
all uterine malignancies. According to the latest 2020 
WHO classification, ESSs can be divided into four cat-
egories: endometrial stromal nodule (ESN), low-grade 
endometrial stromal sarcoma (LG-ESS), high-grade 
endometrial stromal sarcoma (HG-ESS) and undiffer-
entiated uterine sarcoma (UUS) [1]. HG-ESS, a highly 
rare event with a high rate of focal and metastatic recur-
rence and poor prognosis, is of unique biological behav-
iors. The treatment for early (stage I to stage II) HG-ESS 
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Abstract
Background  High-grade endometrial stromal sarcoma (HG-ESS) is a rare malignant tumor with poor prognosis. To 
overcome the limitations of current treatment for advanced patients, the intervention of targeted drug therapy is 
urgently needed.

Case presentation  A 74-year-old married woman who presented with abdominal distension and lower abdominal 
pain was admitted to Hebei General Hospital. After surgery, immunohistochemical staining revealed a malignant 
tumor which was consistent with HG-ESS. Tumor recurrence occurred 2 months after surgery. Then the patient 
underwent chemotherapy with two courses but responded poorly. Subsequently we observed ATM, BLM, and CDH1 
co-mutations by Next Generation Sequencing (NGS). Then the patient received pamiparib, which resulted in a 
10-month progression-free survival (PFS) and is now stable with the administration of sintilimab in combination with 
pamiparib and anlotinib.

Conclusions  Due to the successful use of poly ADP-ribose polymerase inhibitor (PARPi) on HG-ESS, we suggest that 
the selection of effective targeted drugs combined with anti- programmed death-1 (PD-1) drug therapy based on 
genetic testing may become a new option for the treatment of homologous repair deficient (HR-deficient) HG-ESS.
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patients is mainly surgery, including total hysterectomy 
plus bilateral adnexectomy. However, due to its uncer-
tainty in improving patient prognosis, whether tumor cell 
reduction should be performed for advanced (stage III to 
IV) HG-ESS patients is unclear. Moreover, radiotherapy 
or chemotherapy, the most common postoperative adju-
vant therapy strategy, is not effective for treating HG-
ESS. In this study, we report a case of HG-ESS mutated 
with the ATM, BLM, and CDH1 genes, which achieved 
satisfactory clinical results with the oral targeted drug 
pamiparib.

Case presentation
A 74-year-old married woman who presented with 
abdominal distension and lower abdominal pain in 
April 2022 was admitted to Hebei General Hospital. 
Pelvic abdominal computed tomography (CT) sug-
gested that there was a mixed-density space-occupying 
lesion at the base of the uterus as well as abdominal pel-
vic effusion (Fig.  1A). Gynecological ultrasound indi-
cated that there was a mixed echo mass in the uterine 
(129 × 124 × 105 mm mixed echo mass, the inner part of 
which was heterogeneous high echo with strong echo 
spots) and a pelvic-abdominal cavity mixed echo mass 
(233 × 208 × 131 mm mixed echo mass above the uterus) 
with an abdominal fluid dark area. Serological examina-
tion revealed a high level of CA125 (162.300U/ml). The 
patient underwent exploratory laparotomy under general 
anesthesia on 2022-04-20.

The laparotomy findings were an irregular cystic solid 
mass with a diameter of approximately 30 cm in the pel-
vic-abdominal cavity adhering to the posterior wall of the 
uterus, intestinal tubes, and peritoneum, and the surface 
of the greater omentum was covered with focal nodules. 
Intraoperative frozen sections revealed spindle malig-
nancy cells. Subsequently, total abdominal hysterectomy, 
bilateral adnexectomy, partial greater omentectomy, 
pelvic abdominal mass resection, and pelvic adhesion 
release were performed. In histopathological analysis, the 
resected specimen exhibited diffusely distributed tumor 
cells in high-magnification images. Tumor cells rendered 
short spindle shapes and scattered multinucleated tumor 
giant cells could be seen. Nuclear chromatin was fine 
and uniform, and the mitotic index was > 10/10 in high-
power fields (Fig.  2A). Immunohistochemistry showed 
positive staining for cell CyclinD1, CD10, Caldesmon, 
and Vimentin in the tumor cells, with some tumor cells 
also demonstrating positive labeling for MyoD1, CKpan, 
and Myogenin (Fig. 2B, C, D). Tumor cells were negative 
for estrogen receptor, smooth muscle actin, CD117, and 
S100. The Ki-67 labeling index was approximately 40%. 
Based on immunohistochemical staining, it was consis-
tent with HG-ESS of the endocervix with cartilage, bone, 
and striated muscle differentiation.

The patient refused further radiotherapy and chemo-
therapy. Unfortunately, tumor recurrence occurred 2 
months after surgery (Fig.  1B). Thus, the patient was 
given injections of liposomal doxorubicin and ifosfamide 
for 2 cycles. The growth of solid component enhance-
ment in an outer rim of the tumor in the right flank and 
septal enhancement were revealed using enhanced CT 
(Fig.  1C). The patient exhibited ongoing abdominal dis-
tention with a progressive increase in abdominal circum-
ference, and the reaction of the cancer to chemotherapy 
was unsatisfactory. Moreover, the patient had poor toler-
ance to chemotherapy. Subsequently, hybridization cap-
ture-based targeted Next Generation Sequencing (NGS) 
was performed on the illumina MiSeq platform (Life 
Healthcare Group Limited, Beijing, China). The patient 
underwent testing with a 176-gene panel associated 
with molecularly targeted drugs, immunotherapy, and 
chemotherapeutic agents for solid tumors. The propor-
tion of quality score of the sequencing data above Q30 in 
the samples was more than 92% and passed the quality 
control. It was found that ATM, BLM, and CDH1 genes 
were mutated. Specifically, a substitution of c. 5908 C > T 
(p.Gln1970*) was identified in exon 39 of the ATM gene 
with a mutation abundance of 1.17%. Additionally, a 
mutation of c.1937G > T (p.Ser646Ile) was detected 
in exon 8 of the BLM gene with a mutation abundance 
of 32.05%. The third significant genetic change was a 
c.2024  A > G mutation in exon13 of the CDH1 gene 
(p.Lys675Arg) with 45.72% mutation abundance. The 
results showed that the tumor belonged to microsatel-
lite stable (MSS) phenotype. Subsequently, the patient 
received pamiparib 80 mg a day as well as an intraperi-
toneal infusion of recombinant human endostatin (45 mg 
d1,60 mg d4,60 mg d8) combined with cisplatin (40 mg 
d2, d5, d8), respectively. Efficacy was evaluated for partial 
response (PR) (Fig. 1D). Subsequent single-agent admin-
istration of pamiparib 40 mg 2/day maintenance therapy 
resulted in a 10-month progression-free survival (PFS) 
(Fig.  1E). Unfortunately, tumor progression reappeared 
after 10 months and is now stable with the administra-
tion of sintilimab in combination with pamiparib and 
anlotinib (Fig. 1F) (Last follow-up 2023-12-29).

Discussion
The clinical presentation of HG-ESS is often nonspecific, 
possessing a high degree of malignancy and aggressive-
ness associated with a poor prognosis. Histopathological 
examination remains the definitive standard for diagno-
sis. Risk factors that have been found to influence over-
all survival in HG-ESS include disease stage, tumor size, 
minimum and average CA125 levels, menopausal status, 
history of uterine smooth muscle tumors, and endome-
triosis [2]. A study showed that for patients with stage III, 
the 1-year disease-specific survival (DSS) rate was 26.7%, 
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Fig. 1  Radiologic features at different time points. A Preoperative CT scan (unenhanced CT) (2022-4). B Tumor recurrence after surgery (enhanced CT) 
(2022-6). C After 2 cycles of chemotherapy, no significant relief was revealed using enhanced CT (2022-8). D After 6 months of pamiparib treatment, an 
enhanced CT scan indicated PR (2023-2). E A 10-month PFS was achieved using pamiparib (enhanced CT) (2023-6). F The latest enhanced CT review 
(2023-9)
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and 0% for those with stage IV [3]. Analysis of the data 
revealed that the median survival time (95% CI) for HG-
ESS is only 19.9 (17.1–22.1) months, and for each addi-
tional 1 cm in tumor size, the survival rate decreases by 
2%[4].

The current treatment for HG-ESS predominantly 
involves surgical intervention complemented by adjuvant 
systemic therapy and local radiotherapy. However, the 
efficacy of lymphadenectomy for HG-ESS is controversial 
[5]. Current studies suggest that a multimodal approach 
combining surgery, radiotherapy, and chemotherapy may 
enhance PFS exclusively in patients with early-stage dis-
ease [6]. For patients with advanced recurrent metasta-
ses, there is currently no optimal standard treatment, and 
the National Comprehensive Cancer Network guidelines 
recommend that patients with NTRK-like family mem-
ber 4 (SLITRK4) gene fusions choose targeted therapies 
such as larotrectinib or entrectinib.

The combination of CDK4/6 inhibitors and aroma-
tase inhibitors has recently been studied as an option for 
treating ER-positive patients with BCOR-related meta-
static HG-ESS [7].

In this case, a 74-year-old woman was diagnosed with 
ATM, BLM, and CDH1 co-mutations in HG-ESS with 
a lesion characterized by a large mass (30 cm) and late-
stage disease, and she did not receive adjuvant therapy 
after surgery. The patient, whose tumor recurred two 
months post-surgery, and the response to chemotherapy 
was unsatisfactory, achieved remission following treat-
ment with the poly ADP-ribose polymerase inhibitor 
(PARPi) pamiparib.

Advancements in molecular analysis techniques have 
led to the detection of mutations in various genes asso-
ciated with HG-ESS, including YWHAE, NUTM2, EPC1, 

SUZ12, BCOR, PHF1, ZC3H7B, EML4, COL1A1, PDGFB, 
STRN, MDM2, CDK4, SLITRK4, etc. [8–17]. With the 
development of NGS technologies, other mutated genes 
may also be identified, and could serve as potential thera-
peutic targets.

In this report, NGS confirmed mutations within the 
ATM, BLM, and CDH1 genes, among which the ATM 
and BLM genes were classified as homologous recombi-
nation repair (HRR) genes.

The ataxia-telangiectasia mutated (ATM) protein is 
the most critical initiator of the DNA damage response 
(DDR) [18], and its signaling pathway involves hundreds 
of downstream targets that regulate DDR, proliferation, 
metabolism, and other physiological activities of cells 
[19, 20]. According to previous reports, the ATM gene is 
associated with an increased risk of various cancers, such 
as breast cancer, lung cancer, pancreatic cancer, and mel-
anoma [21–24]. Studies have shown that mutations in the 
ATM gene can induce sensitivity to PARPi [25–28].

Bloom syndrome protein (BLM), a member of the RecQ 
family of helicases using the energy from ATP hydrolysis 
to unwind duplex DNA, plays a crucial role in correcting 
mismatched bases to reduce DNA damage induced by 
itself or the external environment [29]. Recently, the rela-
tionship between BLM and tumor development has been 
discovered [30, 31]. For instance, as a potential biomarker 
for prostate cancer, BLM has attracted the attention of 
many investigators. Several reports have suggested that 
BLM mutations in prostate cancer increase the sensitivity 
of patients to PARPi_olaparib [32].

E-cadherin gene (CDH1) mutations are considered 
to be noteworthy contributors to tumor migration and 
invasion [33]. Studies have elucidated that the reduc-
tion of CDH1 expression increases the cytotoxic effect of 
PARPi on triple-negative breast cancer cells with or with-
out BRCA defects by inducing DNA damage, checkpoint 
activation, cell cycle arrest, and cell apoptosis [34].

Few studies have investigated ATM, BLM, and CDH1 
gene mutations in high-grade endometrial stromal sar-
coma. In the present study, ATM, BLM, and CDH1 muta-
tions were detected by NGS. The patient who received 
PARPi obtained a 10-month-PFS after 2 cycles of peri-
toneal perfusion of cisplatin and anti-vascular drugs. 
PARPi combined with anlotinib was applied after subse-
quent progression.

Alterations in DDR genes have been linked to genomic 
instability and increased tumor mutational burden, 
potentially enhancing tumor immunogenicity [35]. The 
STING signaling pathway is activated with incompletely 
repaired DNA damage accumulation, thereby enhancing 
the immune response [36].

Treatment with PARPi may further increase the level 
of DNA damage and promote the release of neoantigens 
and the expression of tumor programmed death-ligand 

Fig. 2  Histopathologic features of HG-ESS. A Hematoxylin and eosin (HE) 
staining (40×) revealed striated muscle differentiation in HG-ESS. B immu-
nohistochemical (IHC) examinations (100×) of HG-ESS tissue was positive 
for CD10. C IHC examinations for CyclinD1. D IHC examinations for MyoD1
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1 (PD-L1) [37]. The potential synergistic effect between 
PARPi and PD-1/PD-L1 inhibitors has been confirmed 
in preclinical studies across various tumor types [38]. 
Accordingly, we managed to control the disease by 
administering immunotherapy in combination with 
PARPi and anlotinib following the patient’s disease 
re-progression.

Conclusion
Due to the low prevalence of HG-ESS, there is a lack of 
consensus on diagnostic and treatment strategies, and 
there is currently no standard treatment for advanced 
patients with recurrent metastases. Thus, we anticipate 
that treatment based on the identification of genetic 
mutations that can be targeted could lead to the explo-
ration of novel therapeutic approaches for HG-ESS. We 
identified a case of postoperative HG-ESS recurrence in 
a patient with mutations in the ATM, BLM, and CDH1 
genes. This patient responded poorly to chemotherapy. 
PFS resulting from the PARPi (pamiparib) was nearly 10 
months in the first stage. After progression, the PARPi 
was used in combination with multi-targeted tyrosine 
kinase inhibitor (anlotinib) and anti-PD-1 (sintilimab)
to achieve a PR. To our knowledge, this is the first case 
report of HG-ESS with ATM, BLM, and CDH1 mutations 
successfully treated with PARPi based on genetic altera-
tion information generated by NGS, suggesting that the 
selection of effective targeted drugs combined with anti-
PD-1 drug therapy on the basis of genetic testing may 
become a new option for the treatment of homologous 
repair (HR-deficient) HG-ESS.
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