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Abstract 

Background Surgery in geriatric patients often poses risk of major postoperative complications. Acute kidney injury 
(AKI) is a common complication following noncardiac surgery and is associated with increased mortality. Early identifi-
cation of geriatric patients at high risk of AKI could facilitate preventive measures and improve patient prognosis. This 
study used machine learning methods to identify important features and predict AKI following noncardiac surgery 
in geriatric patients.

Methods The data for this study were obtained from a prospective cohort. Patients aged ≥ 65 years who received 
noncardiac surgery from June 2019 to December 2021 were enrolled. Data were split into training set (from June 2019 
to March 2021) and internal validation set (from April 2021 to December 2021) by time. The least absolute shrink-
age and selection operator (LASSO) regularization algorithm and the random forest recursive feature elimination 
algorithm (RF-RFE) were used to screen important predictors. Models were trained through extreme gradient boost-
ing (XGBoost), random forest, and LASSO. The SHapley Additive exPlanations (SHAP) package was used to interpret 
the machine learning model.

Results The training set included 6753 geriatric patients. Of these, 250 (3.70%) patients developed AKI. The XGBoost 
model with RF-RFE selected features outperformed other models with an area under the precision-recall curve 
(AUPRC) of 0.505 (95% confidence interval [CI]: 0.369–0.626) and an area under the receiver operating characteris-
tic curve (AUROC) of 0.806 (95%CI: 0.733–0.875). The model incorporated ten predictors, including operation site 
and hypertension. The internal validation set included 3808 geriatric patients, and 96 (2.52%) patients developed AKI. 
The model maintained good predictive performance with an AUPRC of 0.431 (95%CI: 0.331–0.524) and an AUROC 
of 0.845 (95%CI: 0.796–0.888) in the internal validation.

Conclusions This study developed a simple machine learning model and a web calculator for predicting AKI fol-
lowing noncardiac surgery in geriatric patients. This model may be a valuable tool for guiding preventive measures 
and improving patient prognosis.
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Background
Each year, 313 million surgeries are performed worldwide 
[1], and approximately one-third of elective surgeries are 
performed on patients over 65 years of age [2]. Surgery 
in geriatric patients often poses a risk of major postop-
erative complications because of age-related degenerative 
physiological characteristics [3].

Postoperative acute kidney injury (AKI) is a common 
major postoperative complication and is associated with 
both short-term and long-term adverse events, such as 
prolonged hospitalization, increased postoperative mor-
tality, and further development of chronic kidney disease 
[4, 5]. Even mild kidney injury is related to increased 
morbidity and mortality [6]. The incidence of postop-
erative AKI varies between 2 and 30% depending on the 
study population and definition of AKI [7]. The in-hospi-
tal mortality rate for patients with postoperative AKI is 
13.3%, compared with 0.9% for those without postopera-
tive AKI [8]. Patients may not recover their initial state of 
renal function after the onset of kidney injury [9]. There-
fore, it is critical to prevent the occurrence of postopera-
tive AKI [10]. Early identification of patients at high risk 
of AKI could facilitate preventive measures and support 
perioperative management.

Existing risk assessment tools are mainly aimed at pre-
dicting postoperative AKI after cardiac surgery [11–13]. 
The prediction of AKI among noncardiac surgeries has 
been studied less extensively. Thorough evaluation is usu-
ally performed in patients with cardiac surgery because 
of the innate high postoperative AKI risk [14]. Patients 
with noncardiac surgery often have insufficient evalu-
ation, and the probability of overlooking postoperative 
AKI is higher in noncardiac surgery than in cardiac sur-
gery [15]. In fact, postoperative AKI results in an eight-
fold increased postoperative 30-day mortality for patients 
with noncardiac surgery [16]. It is necessary to identify 
risk factors and develop a model for predicting AKI fol-
lowing noncardiac surgery [7].

Several risk assessment tools have been developed 
for predicting AKI following noncardiac surgery. Due 
to several limitations, these tools have not been widely 
used in clinical settings. First, most prediction mod-
els were established by logistic regression [14]. Con-
straints on the logistic regression analysis method led 
the models to select risk factors among a small group 
of variables with presumed linear relationships, which 

may have contributed to the loss of potential predic-
tors and reduction of predictive accuracy [17]. Second, 
although recent studies have demonstrated the potential 
of machine learning methods in predicting postopera-
tive AKI [18, 19], the widespread application of machine 
learning models has been limited because they contain 
a large number of variables [20]. Third, existing models 
for predicting AKI following noncardiac surgery have 
often been restricted to specific surgery types [21, 22], 
so they lack generalizability to other surgical processes. 
In addition, no existing models have been developed for 
the specific assessment of geriatric patients. Compared 
with young patients, geriatric patients are more vulner-
able to postoperative acute kidney injury (AKI) [3]. Geri-
atric patients constitute a specific population in medical 
research because of age-related degenerative physiologi-
cal characteristics, and ignoring age categories can cause 
inaccurate parameter estimation. Previous studies have 
indicated that risk factors associated with postoperative 
AKI differ between younger and older populations [23]. 
Prediction models developed for general patient popu-
lations may not provide sufficient accuracy in geriatric 
patients [24].

In this study, we collected data prospectively and aimed 
to develop a simple machine learning model for pre-
dicting AKI following noncardiac surgery in geriatric 
patients, thus facilitating the clinical applicability of the 
machine learning model.

Methods
Data source
This study has been reported in line with the Strength-
ening The Reporting Of Cohort Studies in Surgery 
(STROCSS) criteria [25] and the Transparent Reporting 
of a Multivariable Prediction Model for Individual Prog-
nosis or Diagnosis (TRIPOD) guidelines [26]. The data 
for the present study were obtained from a prospective 
cohort of geriatric patients built in a tertiary academic 
hospital in China from 2019. Patients aged ≥ 65 years who 
underwent noncardiac surgery between June 2019 and 
December 2021 were enrolled. Patients were excluded if 
they (1) had chronic kidney disease, defined as a preop-
erative estimated glomerular filtration rate lower than 60 
ml ×  min−1 × 1.73  m−2 (ml·min−1·1.73  m−2) or a require-
ment for dialysis; (2) underwent urologic procedures; or 
(3) were lost to follow-up. If patients underwent multiple 

Trial registration The protocol of this study was approved by the Committee of Ethics from West China Hos-
pital of Sichuan University (2019–473) with a waiver of informed consent and registered at www. chictr. org. cn 
(ChiCTR1900025160, 15/08/2019).
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surgeries during the study period, only the first surgery 
was included in the analysis. Related patient data were 
collected by trained residents on the day before surgery. 
The attending physician and the resident rechecked the 
collected information before surgery. If any errors or 
omissions existed, the clinician would make corrections 
or supplement the information. Preoperative laboratory 
tests were automatically retrieved from the laboratory 
information system. All laboratory tests were performed 
within 7 days before surgery. If a patient had more than 
one result for the same test, the most recent preoperative 
result was used in the analysis. Preoperative clinical data 
included demographic characteristics, preoperative vital 
signs, laboratory tests and comorbidities.

To ascertain the presence of postoperative AKI, 
research personnel performed follow-up at 24 h postop-
eratively, 48 h postoperatively, before hospital discharge, 
and 7 days postoperatively. Patients who developed post-
operative AKI were frequently contacted until recov-
ery or death. Throughout each patient’s hospital stay, 
research personnel performed bedside follow-up vis-
its; after hospital discharge, patients were contacted via 
phone.

Outcome definition
The study outcome was the onset of postoperative AKI, 
defined using the diagnostic criteria in the Kidney Dis-
ease: Improving Global Outcomes study [27]. Specifically, 
postoperative AKI was defined by the presence of one of 
the following: creatinine elevation ≥ 26.5 μmol/L within 
48 h postoperatively, compared with preoperative cre-
atinine level; creatinine elevation ≥ 1.5-fold greater than 
baseline creatinine level within 7 days postoperatively; 
urine output < 0.5 ml/kg/h during the first 6h postopera-
tively. The preoperative serum creatinine value measured 
soon before surgery was regarded as the baseline creati-
nine level.

Data preprocessing and model development
All variables are presented as continuous variables or cat-
egorical variables. Missing values were imputed by 0 s, 
with indicators representing missingness, which regarded 
missing values as a separate group. Data from June 2019 
to March 2021 were used as training data, and data from 
April 2021 to December 2021 were used for internal vali-
dation. Training data were randomly split 80% for model 
training and 20% for model testing.

Univariate analysis was used to identify potential pre-
dictors of postoperative AKI in the training set. Every 
single factor at the P < 0.05 level was deemed statistically 
significant. The weight of evidence (WOE) [28] approach 
was used to discretize potential predictors, and weights 
were set for each category of each predictor. Then, we 

applied two algorithms for further feature selection, 
including the least absolute shrinkage and selection oper-
ator (LASSO) regularization algorithm and the random 
forest recursive feature elimination (RF-RFE) algorithm. 
In LASSO regression, features were selected according 
to the binomial deviance within one standard error of its 
minimum value. The RF-RFE method selected risk fac-
tors based on the area under the receiver operating char-
acteristic curve (AUROC). Tenfold cross-validation was 
performed on the training set for parameter tuning.

Three classification methods were used to develop 
prediction models based on features selected by LASSO 
and RF-RFE, including LASSO, random forest (RF) and 
extreme gradient boosting (XGBoost). Parameter tuning 
was performed via grid search and tenfold cross-valida-
tion on the training set to construct prediction models. 
In LASSO regression, the classifier was trained with the 
L1 penalty, and the hyperparameter “max_iter” was used 
to constrain the model to avoid overfitting. In the RF 
and XGBoost models, we controlled the number of esti-
mators and tree depth to avoid overfitting. The RF clas-
sifier was trained with 80 estimators, and the maximum 
tree depth was constrained to 4. The XGBoost classifier 
was trained by 60 estimators with a maximum tree depth 
of 3, and the learning rate was set at 0.3. The number of 
patients without postoperative AKI considerably out-
weighed the number of patients with postoperative AKI, 
which led to extreme class imbalance. To address this 
issue, the hyperparameter “class_weight” was set to “bal-
anced” to automatically increase the weight of the posi-
tive sample in RF and LASSO, and “scale_pos_weight” 
was set to 1 in XGBoost. These hyperparameters were 
used for oversampling in the related model. Furthermore, 
we added clinically relevant predictors to the final model.

Model evaluation
To evaluate the discrimination ability of the model, we 
calculated the sensitivity (recall), precision, F1 score, 
specificity, accuracy, area under the precision-recall 
curve (AUPRC), and AUROC. Among these perfor-
mance metrics, precision and sensitivity can provide 
more direct insight into predictive performance when the 
class distribution is imbalanced [29]. The F1 score is the 
harmonic mean of precision and sensitivity. Compared 
with AUROC, AUPRC gives no credit for truly predicting 
negatives. For a model developed on an imbalanced data-
set, AUPRC can give a more accurate interpretation of 
the model’s performance [29]. In this study, we chose the 
F1 score and AUPRC as the main evaluation metrics for 
model comparison. The Brier score was used to evaluate 
the calibration ability of the model. A lower Brier score 
value indicates better model performance (closer to 0 is 
ideal, and values > 0.3 indicate poor calibration) [30]. All 
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model parameters were fixed after training the model on 
the training set. The best-performing model was further 
evaluated using the internal validation set. Sensitivity 
analysis was performed for the operation site.

Model explanation
We used the SHAP algorithm [31] to elucidate the con-
tribution of each predictor to the outcome predicted by 
the best-performing model and explain individual pre-
diction. Shapley values were computed for all patients in 
the training and internal validation sets to measure over-
all variable importance and illustrated using a beeswarm 
plot.

The SHAP value of each feature can be calculated by 
a partial dependence plot (PDP or PD Plot) calculator, 
which can display the marginal effect of a single feature 
on the outcome predicted by the model [32]. A PDP can 
demonstrate whether a feature’s relationship with an out-
come is linear, monotonic, or more complex.

Statistical analysis
Differences in variable distribution between training and 
internal validation sets were assessed for significance 
using Student’s t test or Wilcoxon rank-sum test for 
numerical variables and chi-squared test or Fisher exact 
test for categorical variables. A 2-sided P value of < 0.05 
was considered statistically significant. Bootstrapping 
was used on the test set and internal validation set to cal-
culate the 95% confidence intervals. All statistical analy-
ses were conducted via Python 3.7.6. Machine learning 
models were developed using the scikit-learn library.

Results
Patient characteristics
Of 14 463 geriatric patients with noncardiac surgery, a 
total of 3902 patients were excluded. The final dataset 
enrolled 10 561 geriatric patients, including 6753 patients 
in the training set (from June 2019 to March 2021) and 
3808 patients in the internal validation set (from April 
2021 to December 2021) (Fig.  1). The data distribution 
between these two sets was similar, despite statistical sig-
nificance owing to the large sample size (Supplementary 
table  S1). In the training dataset, 250 (3.70%) patients 
developed postoperative AKI. A smaller proportion 
of patients in the internal validation set suffered AKI 
(2.52%, P = 0.001 vs the training set).

Feature selection and model comparison
Univariate analysis was used to identify potential predic-
tors from 126 variables. The results showed that 69 varia-
bles were significantly associated with postoperative AKI 
(P < 0.05) (Supplementary table  S2). In further feature 
selection, LASSO identified the eleven most influential 

predictors for discriminating postoperative AKI as λ 
increased to 0.006 (one standard error of the minimum λ) 
(Supplementary figure S1). The RF-RFE method achieved 
the highest AUROC when it included nine predictors 
(Supplementary figure S2).

LASSO, RF and XGBoost algorithms were used to 
develop prediction models based on features selected by 
LASSO and RF-RFE, respectively. The XGBoost model 
with RF-RFE selected features exhibited the highest 
AUPRC of 0.505 (95% confidence interval [CI]: 0.369–
0.626) and the highest F1 score of 0.527 (95% CI: 0.385–
0.659). For calibration, the Brier score of the XGBoost 
model was the lowest among all these models (0.025 
[95%CI: 0.018–0.033]) (Table 1).

Emergency surgery is widely considered to be associ-
ated with postoperative AKI [7, 33], so it was added to 
the final model. Predictors in the final model included 
hypertension, urine protein, diabetes mellitus, operation 
site, American Society of Anesthesiologists (ASA) clas-
sification, operation time, serum cystatin C level, coef-
ficient of variation of red blood cell distribution width 
(RDW-CV), international normalized ratio (INR), and 
emergency surgery. In the internal validation, the final 
XGBoost model maintained good predictive perfor-
mance, with an AUPRC of 0.431 (95%CI: 0.331–0.524) 
and an AUROC of 0.845 (95%CI: 0.796–0.888) (Fig.  2). 
Sensitivity analyses were performed on upper abdomen 
surgery, lower abdomen surgery and thoracic surgery. In 
the internal validation set, 852 patients underwent upper 
abdomen surgery, and 40 (4.69%) patients developed 
postoperative AKI. The final XGBoost model achieved an 
AUROC of 0.850 (95% CI: 0.777–0.912) and an AUPRC 
of 0.574 (95% CI: 0.419–0.714) (Supplementary fig-
ure S3). For lower abdomen surgery, 686 patients were 
enrolled, and 31 (4.52%) patients developed postopera-
tive AKI. The final XGBoost model achieved an AUROC 
of 0.812 (95% CI: 0.717–0.896) and an AUPRC of 0.448 
(95% CI: 0.276–0.619) (Supplementary figure S4). A total 
of 536 patients who underwent thoracic surgery were 
included, and 12 (2.24%) patients developed postopera-
tive AKI. The final XGBoost model achieved an AUROC 
of 0.693 (95% CI: 0.506–0.866) and an AUPRC of 0.210 
(95% CI: 0.026–0.470) (Supplementary figure S5).

Model explanation
The ten predictors were subjected to the SHAP evalua-
tor to acquire the contribution of each predictor to the 
prediction of the XGBoost model. Features with positive 
or negative Shapley values are correlated with higher or 
lower predicted risk for postoperative AKI, respectively. 
Blue indicates a decrease, and red indicates an increase 
in the indicated parameter. As presented in Fig. 3, all pre-
dictors had positive correlations with AKI.
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Fig. 1 Flowchart for developing the training set and internal validation set

Table 1 Performance metrics of candidate models

Abbreviations: CI confidence interval, AUPRC area under the precision-recall curve, AUROC area under the receiver operating characteristic curve, LASSO least absolute 
shrinkage and selection operator regression, XGBoost extreme gradient boosting, RF-RFE random forest recursive feature elimination algorithm

Model (Feature 
selection 
method)

Precision 
(95%CI)

Sensitivity 
(95%CI)

F1 score 
(95%CI)

AUPRC (95%CI) Specificity 
(95%CI)

AUROC (95%CI) Brier score 
(95%CI)

Random forest 
(LASSO)

0.221 (0.148–
0.290)

0.539 (0.404–
0.667)

0.312 (0.222–
0.391)

0.482 (0.352–
0.607)

0.921 (0.906–
0.935)

0.817 (0.752–
0.877)

0.090 
(0.083–0.096)

XGBoost (LASSO) 0.780 (0.600–
0.923)

0.392 (0.265–
0.531)

0.519 (0.379–
0.652)

0.491 (0.362–
0.616)

0.995 (0.991–
0.998)

0.810 (0.741–
0.873)

0.027 
(0.020–0.035)

LASSO (LASSO) 0.105 (0.076–
0.134)

0.779 (0.673–
0.885)

0.185 (0.138–
0.230)

0.452 (0.307–
0.581)

0.722 (0.697–
0.748)

0.823 (0.755–
0.882)

0.168 
(0.159–0.177)

Random forest 
(RF-RFE)

0.516 (0.365–
0.667)

0.412 (0.280–
0.550)

0.456 (0.325–
0.581)

0.476 (0.340–
0.598)

0.984 (0.976–
0.991)

0.806 (0.736–
0.869)

0.042 
(0.036–0.049)

XGBoost (RF-RFE) 0.909 (0.769–
1.000)

0.374 (0.246–
0.509)

0.527 (0.385–
0.659)

0.505 (0.369–
0.626)

0.998 (0.996–
1.000)

0.806 (0.733–
0.875)

0.025 
(0.018–0.033)

LASSO (RF-RFE) 0.103 (0.075–
0.131)

0.779 (0.673–
0.885)

0.182 (0.135–
0.226)

0.414 (0.272–
0.553)

0.716 (0.691–
0.74)

0.812 (0.743–
0.874)

0.171 
(0.161–0.180)
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Numerical clinical parameters can change continu-
ously, but the related risk may not increase or decrease 
linearly [32]. It is important to identify the threshold 
where the risk of predicted outcome abruptly changes. 
We used Shapley values to investigate how these spe-
cific features affected the predicted risk as the value 
was altered (Fig.  4). We found that the predicted risk 
of postoperative AKI increased at the following thresh-
olds: RDW-CV > 25.5% (Fig. 4a), INR > 1.1 (Fig. 4b), and 
serum cystatin C level > 2 mg/L (Fig. 4c). For categorical 

parameters, predictors associated with increased risk of 
postoperative AKI included ASA classification higher 
than III (Fig. 4d), operation time ≥ 2 h (Fig. 4e), elevated 
urine protein (Fig.  4f ), abdominal surgery (Fig.  4g), 
hypertension (Fig. 4h), diabetes mellitus (especially insu-
lin-dependent diabetes mellitus) (Fig. 4i), and emergency 
surgery (Fig. 4j).

A web calculator was established for clinicians to 
use the model (available at https:// huggi ngface. co/ 
spaces/ Yijie7/ AKI_ Predi ction), and the interface of the 

Fig. 2 Performance characteristic curves of the final extreme gradient boosting model. a Precision-recall curves of the final extreme gradient 
boosting model based on the test set and internal validation set. b Receiver operating characteristic curves of the final extreme gradient boosting 
model based on the test set and internal validation set. Abbreviations: AUPRC area under the precision-recall curve, AUROC area under the receiver 
operating characteristic curve

Fig. 3 SHAP values of ten predictors incorporated in the final extreme gradient boosting model. Abbreviations: RDW-CV coefficient of variation 
of red blood cell distribution width, ASA American Society of Anesthesiologists, SHAP SHapley Additive exPlanations, XGBoost extreme gradient 
boosting

https://huggingface.co/spaces/Yijie7/AKI_Prediction
https://huggingface.co/spaces/Yijie7/AKI_Prediction
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calculator was shown in Fig.  5. The prediction result 
can be obtained after inputting the value of corre-
sponding variable for the patient. For this patient, the 

predicted probability of AKI was 0.69, indicating that 
the patient was at high risk of AKI. Related risk factors 

Fig. 4 Partial dependence plots of predictors in the final prediction model. The actual value for each predictor is shown on the x-axis, and the SHAP 
value corresponding to the abscissa value is shown on the y-axis. Each point represents a patient sample in the database. Positive or negative 
SHAP values indicate which feature contributes to acute kidney injury (positive) or no acute kidney injury (negative). Abbreviations: SHAP SHapley 
Additive exPlanations, ASA American Society of Anesthesiologists
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included grade II hypertension, lower abdomen sur-
gery, and elevated urine protein.

Discussion
Postoperative AKI is associated with both short-term 
and long-term adverse events [4]. Accurate prediction 
of postoperative AKI risk can facilitate preoperative 
informed consent, perioperative medical decision-mak-
ing, and resource utilization, thus improving patient 
prognosis. In this study, we collected data prospectively 
and developed a simple machine learning model for the 
preoperative prediction of AKI following noncardiac sur-
gery in geriatric patients.

The transfer of complex machine learning models with 
numerous variables from research to real-world appli-
cation poses additional challenges because of technical 
barriers, data security, and business considerations [20]. 
Considering the balance between predictive accuracy 
and ease of clinical application, we developed a simple 
XGBoost model using predictors selected by RF-RFE and 
made it available as a web calculator to facilitate greater 
application among clinicians. Victor J. Lei and colleagues 
developed machine learning models for predicting AKI 
following noncardiac surgery, and their model based on 
preoperative clinical data achieved an AUROC of 0.804 
[19]. Our model achieved similar prediction perfor-
mance with fewer predictors. Previous prediction mod-
els created by logistic regression analysis for predicting 
AKI following noncardiac surgery achieved AUROCs of 
0.74 to 0.80 in the development set and 0.70 to 0.72 in 

the validation set [10, 14]. Temporal validation was con-
ducted in our study, which simulates the practical appli-
cation of the prediction model. Our model achieved a 
greater AUROC in the development set and maintained 
good predictive performance in the validation set. The 
results indicated that the machine learning model may be 
more robust than the model developed by logistic regres-
sion analysis.

A total of nine predictors were selected by the RF-RFE 
method and included in our final XGBoost model. For 
continuous variables, serum cystatin C, INR and RDW-
CV were found to be strongly associated with postop-
erative AKI in our study. Serum cystatin C is eliminated 
solely via glomerular filtration and can be easily meas-
ured [34]. Compared with urea and creatinine, the 
serum cystatin C concentration increases earlier when 
the kidney is injured [35], and it is a useful predictor of 
short-term mortality and AKI in acute aortic dissec-
tion patients [36]. INR is a standardized measure of the 
extrinsic coagulation pathway. Elevated INR has been 
reported to be related to increased infection, bleeding, 
and mortality rates after total knee arthroplasty [37]. For 
patients undergoing liver transplantation, INR is found to 
be associated with postoperative AKI [38]. Red blood cell 
distribution width (RDW) reflects the variability in red 
blood cell size. Elevated RDW can be caused by eryth-
rocyte production dysfunction or increased erythrocyte 
destruction [39]. Previous studies have demonstrated the 
value of RDW for predicting postoperative mortality and 
AKI [39, 40]. In our study, RDW-CV > 25.5%, INR > 1.1, 

Fig. 5 The postoperative acute kidney injury risk prediction for an example patient by the web calculator. The predicted probability of acute kidney 
injury was 0.69 for this patient, and related risk factors included grade II hypertension, lower abdomen surgery, and elevated urine protein
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or serum cystatin C level > 2 mg/L were found to be sig-
nificantly associated with an increased risk of AKI fol-
lowing noncardiac surgery in geriatric patients.

Among categorical variables, we found that abdomi-
nal surgery, hypertension, elevated urine protein, opera-
tion time over 2 h, ASA classification higher than III, and 
diabetes mellitus (especially insulin-dependent diabetes 
mellitus) may lead to an increased risk of postoperative 
AKI in geriatric patients following noncardiac surgery. 
Abdominal surgery can cause elevated intra-abdominal 
pressure, which leads to mechanical compression of renal 
veins and constriction of renal arteries [41]. Patients 
who undergo abdominal surgery have a higher risk of 
renal hypoperfusion and subsequent onset of AKI [42]. 
Hypertension and diabetes mellitus have been broadly 
reported to be powerful predictors of postoperative AKI 
[15, 43]. The presence of urine protein can be an indica-
tor of unrecognized glomerulonephritis, and preopera-
tive urine protein has been reported to be independently 
associated with AKI following noncardiac surgery [44]. 
The ASA score evaluates patients’ physiological condi-
tions based on the amount and severity of comorbidities, 
and it has been found to be closely related to postop-
erative AKI [22, 45]. In our prediction model, operation 
time and emergency surgery partially represent the clini-
cal severity of the patient and surgery. Serum cystatin C 
and urine protein are closely related to underlying kidney 
function. The model incorporates the representative find-
ings of patient comorbidities, clinical severity, baseline 
kidney function, and surgical difficulty in the preopera-
tive period. We used actual operation time to identify the 
true relationship between operation time and postopera-
tive AKI, and WOE was used to discretize continuous 
actual operation time into different categories. In the 
preoperative assessment, the operation time could be 
substituted by the estimated operation time.

As predictors incorporated in this model could be eas-
ily obtained during preoperative evaluation, the model 
could be used to identify high-risk geriatric patients 
before noncardiac surgery. Accurate preoperative predic-
tion could facilitate the implementation of prophylactic 
interventions and the optimization of clinical resources. 
For example, timely fluid therapy and avoidance of 
nephrotoxic agents could be used to protect kidney 
function in high-risk patients during the perioperative 
period. In addition, our model may provide medical staff 
with "early warnings" through the analysis of important 
predictors. For geriatric patients with poorly controlled 
diabetes mellitus or hypertension, improving their preop-
erative health status may decrease the risk of AKI. Cor-
recting the preoperative clotting status based on the INR 
and shortening the overall procedure may also be benefi-
cial for high-risk patients.

Most prediction models were developed on combined 
data from geriatric patients and younger patients [10, 14]. 
However, geriatric patients constitute a specific popula-
tion in medical research because of age-related changes 
in physiological characteristics, and risk factors associ-
ated with postoperative AKI differ between younger and 
older populations [23]. Ignoring age categories can cause 
inaccurate parameter estimation, so prediction models 
developed on general patient populations may be unsuit-
able for geriatric patients [24]. This study developed a 
prediction model based on data from geriatric patients to 
improve the prediction in geriatric patients.

This study has several limitations. First, we used data 
from a single institution to develop and internally vali-
date our prediction model. Future studies are needed to 
verify the generalizability of our model to new datasets 
from other institutions. Second, unlike other measured 
actual values, the validity of estimated operation time is 
susceptible to subjective bias. Incorrect estimation may 
decrease the accuracy of the prediction result. Centers 
with limited availability of estimated operation time may 
find it difficult to use the risk prediction calculator. Third, 
limited by the small number of patients in each group 
(divided by operation site), sensitivity analyses were 
only performed on upper abdomen surgery, lower abdo-
men surgery and thoracic surgery. Our prediction model 
maintained good predictive ability in the sensitivity anal-
yses for upper abdomen surgery and lower abdomen sur-
gery and showed relatively poor performance for thoracic 
surgery. In the thoracic surgery subgroup, only twelve 
patients developed postoperative AKI. This result may 
not be accurate because of the small number of patients 
in this group. Future studies are needed to verify the pre-
dictive ability of our model for several subspecialties.

Conclusions
In this study, we established a simple machine learning 
model based on easily available preoperative information 
for predicting AKI following noncardiac surgery in geri-
atric patients and made it available by developing a Web-
based calculator. The accurate identification of patients 
with high postoperative AKI risk could facilitate preoper-
ative informed consent, optimize perioperative decision-
making, and aid in the allocation of medical resources.
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