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Abstract 

Background Driving is a complex behavior that may be affected by early changes in the cognition of older individu‑
als. Early changes in driving behavior may include driving more slowly, making fewer and shorter trips, and errors 
related to inadequate anticipation of situations. Sensor systems installed in older drivers’ vehicles may detect these 
changes and may generate early warnings of possible changes in cognition.

Method A naturalistic longitudinal design is employed to obtain continuous information on driving behavior 
that will be compared with the results of extensive cognitive testing conducted every 3 months for 3 years. A driver 
facing camera, forward facing camera, and telematics unit are installed in the vehicle and data downloaded every 3 
months when the cognitive tests are administered.

Results Data processing and analysis will proceed through a series of steps including data normalization, adding 
information on external factors (weather, traffic conditions), and identifying critical features (variables). Traditional pre‑
diction modeling results will be compared with Recurring Neural Network (RNN) approach to produce Driver Behavior 
Indices (DBIs), and algorithms to classify drivers within age, gender, ethnic group membership, and other potential 
group characteristics.

Conclusion It is well established that individuals with progressive dementias are eventually unable to drive 
safely, yet many remain unaware of their cognitive decrements. Current screening and evaluation services can test 
only a small number of individuals with cognitive concerns, missing many who need to know if they require treat‑
ment. Given the increasing number of sensors being installed in passenger vehicles and pick‑up trucks and their 
increasing acceptability, reconfigured in‑vehicle sensing systems could provide widespread, low‑cost early warnings 
of cognitive decline to the large number of older drivers on the road in the U.S. The proposed testing and evaluation 
of a readily and rapidly available, unobtrusive in‑vehicle sensing system could provide the first step toward future 
widespread, low‑cost early warnings of cognitive change for this large number of older drivers in the U.S. 
and elsewhere.
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Background
About 1 in 9 (10.7%) people in the US age 65 and older 
has Alzheimer’s disease or related dementia; another 15 
to 20% have mild cognitive impairment (MCI), and one-
third of these will develop dementia within 5 years [1]. 
Older African Americans and Hispanics have a higher 
prevalence rate, probably related to higher rates of dia-
betes, cardiovascular disease, and the effects of socioeco-
nomic disadvantage [2], reinforcing the importance of 
culturally diverse samples in Alzheimer’s research. Indi-
viduals with dementia eventually cannot perform com-
plex everyday activities, including driving. Interestingly, 
the neuropathologies of AD (Alzheimer’s Disease) have 
been found in the brains of older drivers killed in motor 
vehicle accidents who did not even know they had AD 
and had no apparent signs of it [3].

Older drivers may be at greater risk of collision in the 
years before AD diagnosis [4]. One analysis identified a 
five-fold increase in crashes 3 years before the diagnosis 
of dementia and a higher likelihood of failing a road test 
(risk ratio = 10.77) [5]. Similarly, Fraade‐Blanar and col-
leagues [6] found that a one unit-lower Cognitive Abili-
ties Screening Instrument scored using item response 
theory  (CAS-IRT) predicted a crash incidence rate of 
1.25 in a sample of 2,165 older group health enrollees. 
Drivers with dementia make twice as many mistakes as 
controls and fail on-the-road tests at a rate of 67% com-
pared to 3% for controls [7]. Pavlou and colleagues [8] 
reported that driving behavior changes such as speed, lat-
eral position, reaction time, following distance, left turns, 
and time off the road distinguish normal controls from 
those with cerebral pathologies.

Previous research has focused on older drivers with 
dementia, but interest in the driving behavior of individu-
als with MCI is increasing. Few studies have reported the 
use of continuous, unobtrusive sensors and related moni-
toring devices for detecting subtle variability in the per-
formance of highly complex everyday activities over time. 
Eby and colleagues [9] employed in-vehicle technology to 
monitor driving performance for 2 months. Compared 
with 26 unimpaired drivers, 17 drivers with early-stage 
dementia were found to have significantly restricted driv-
ing space and were more likely to get lost, even though 
they had been cleared for driving. In a small sample of 
21 unimpaired older adults and 7 with MCI who were 
followed for 200 days using a sensing device, those with 
MCI drove fewer miles and fewer of these miles on high-
ways [10].

The Long Road study (2021) is among the first longi-
tudinal studies showing the usefulness of naturalistic 
data and machine learning techniques to detect MCI 
and dementia from driving behavior [11]. Among 2977 
older drivers studied, 64 were identified as having MCI or 

dementia through a review of their medical records and 
annual interview. Age was predictive of MCI and demen-
tia, followed by the percentage of trips traveled within 15 
miles of home, race/ethnicity, minutes per trip chain (i.e., 
length of trips starting and ending at home), minutes per 
trip, and the number of challenging braking events with 
deceleration rates 0.35 g. The point of conversion to MCI 
or dementia could not be determined, at least partly due 
to the data collection method. Data from our naturalis-
tic, longitudinal study may contribute to identifying these 
time points.

Similarly, Bayat and colleagues [12] conducted a study 
using machine learning methods to evaluate the ability of 
in-vehicle GPS to distinguish drivers with preclinical AD 
from those without preclinical AD. Using four Random 
Forest (RF) models with three sets of variables, driving 
features only, driving features and age, and driving fea-
tures, age, andAPOEε4 status, it was found that predic-
tion of preclinical AD was 82% using GPS-based driving 
indicators, 88% using age and driving indicators, and 91% 
using age, APOE ε4 status, and driving.

Davis et al. [13] performed a pilot study using in-vehi-
cle technology (GPS, video) to capture driving behaviors 
and errors of adult drivers with preclinical AD and early 
symptomatic AD compared to cognitively normal adults. 
In early AD, g-force (a vector of acceleration) events pro-
duced common errors predominately related to inad-
equate anticipation of situations, such as late response or 
driving too fast, mistakes of judgment, and frequent traf-
fic violations. Davis et al. [13] suggest that an event-based 
approach rather than costly continuous video monitor-
ing to assess driving risk behaviors can be more efficient. 
Those with preclinical AD drove more slowly and had 
the lowest number of aggressive events over 3 months. 
An important limitation of the study was that cognitively 
intact individuals (CDR = 0) did not have video installed 
in their vehicles.

The rationale for the current research arises from the 
importance of identifying cognitive dysfunction as early 
and efficiently as possible. An estimated 4 to 8 million 
older adults with MCI are currently driving [14]. This 
significant proportion of older drivers constitutes a previ-
ously unexplored opportunity to detect cognitive decline. 
In this study, we will systematically examine how current 
in-vehicle technologies may detect anomalous driving 
behavior indicative of cognitive impairment.

Methods/design
Objective
The objective of this study is to test an unobtrusive multi-
sensor system’s ability to detect cognitive change in older 
(≥ 65) drivers.
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Aims
To achieve this goal, the In-Vehicle study has the fol-
lowing aims:

1. Test the ability of a package of in-vehicle sensors to 
detect cognitive change:

a. Establish baseline cognitive status and driving 
behaviors.

b. Examine sensor data output for the ability to 
detect the cognitive change in individual meas-
ures, latent constructs, and diagnostic groupings 
(e.g., change from unimpaired to MCI) over time.

c. Identify cognitive changes that in-vehicle sensors 
can detect.

d. Identify the sensor system components that best 
predict these significant changes in cognition.

2. Develop algorithms that can:

a. Translate sensor data into Driving Behavior Indi-
ces (DBIs) that are gender, age, and vehicle spe-
cific.

b. Examine the accuracy and stability of the DBIs 
by comparing DBIs generated using exponential 
smoothing and ARIMA techniques to DBIs that 
are adjusted for weather and road conditions 
derived from national and state databases.

c. Provide interpretable indicators of change in DBI 
and associated decline in the underlying cogni-
tive functions.

3. Evaluate the acceptability to older drivers of the 
installed systems.

a. Evaluate participants’ response to the sen-
sor system in terms of their awareness of the 
installed system, obtrusiveness, driver distrac-
tion, reported effect on driving behavior, and 
overall acceptability.

Study design
This study will utilize a naturalistic longitudinal parallel 
mixed methods design. The quantitative phase of this 
research will be a longitudinal forecasting design with 
latent constructs. The qualitative phase will use content 
analysis to investigate the drivers’ perception of accept-
ability and the unobtrusive nature of the sensor unit.

Sample size calculation
The average national percent change in cognition dis-
aggregated by age groups (65–74, 75–84, 85+) over 

a 3-year period [15] was used to calculate number of 
participants. G*Power 3.1.9.2. was used to calculate 
the total number of participants predicted to show 
measurable change in cognition required to obtain 
power = 0.80 with an alpha = 0.05, 2 groups (Change, 
No-Change), 12 repeated measures, a correlation 
between measures of 0.5 and a medium effect size 
(Cohen’s f = 0.0.17) which is 200 using the repeated 
measures algorithm in G*3.1.9.2. With an average of 
52.1% of the participants estimated to show a mini-
mum change over the 3-year period, a total sample of 
384 participants is required. Due to their age and driv-
ing requirements of the participants in this study, a 
20% attrition rate [16] was used to calculate the total 
number of participants to be enrolled in this study. This 
resulted in a total required sample of 460.

Study eligibility
Inclusion criteria
Age 65 and older, a valid driver’s license, evidence of 
insurance, use of a passenger car or pickup truck, age 
and education-adjusted Montreal Cognitive Assessment 
(MoCA) [17] score of 19 or higher, and a willingness to 
return to one of three testing/installation sites for retest-
ing, data download, and sensor maintenance as needed 
every 3 months, are all requirements for inclusion. Poten-
tial participants must also be able to speak English, Span-
ish, or Haitian Creole and pass the standard state driver’s 
license requirements for vision, hearing, strength, and 
flexibility.

Exclusion criteria
Those who are under 65, do not have a vehicle to drive, 
a valid driver’s license or insurance, score below 19 on 
the MoCA [17], cannot return every 3 months for retest-
ing and sensor maintenance, cannot pass the physical 
screening, or decline to sign the Institutional Review 
Board-approved written consent, or are not fluent in 
either Spanish, English or Creole, will be excluded. We 
will exclude those with a clinically significant active ill-
ness, neurological or psychiatric disorders, or loss of con-
sciousness within the last 5 years and those who cannot 
meet the state physical ability requirements for vision or 
hearing.

Participant recruitment
A community outreach approach to participant recruit-
ment will be led by a dedicated study recruiter with 
prior research experience. The recruitment effort will 
begin with networking with representatives of commu-
nity-based senior services, either at networking events 
or in individual meetings. This high-level networking is 
directed to developing connections with organizations 
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that serve the age 55+ segment of the population to elicit 
invitations to conduct formal and informal information 
sessions with the older clients/members/residents in 
their communities, programs, and services. This includes 
senior living communities, senior day programs, places 
of worship, and, secondarily, health services. Presenta-
tions and discussions with potential participants will be 
done in English, Spanish, and Haitian Creole. Bilingual 
research team members will join the study recruiter to 
conduct the meetings with primarily non-English speak-
ing groups. Printed materials about the study will be 
available in these languages, as well as information on 
how to connect with the study team to enroll. Another 
smaller recruiting effort will be primarily participant-
driven. With Institutional Review Board approval, par-
ticipants who introduce an eligible individual to the study 
are given an additional gift card for each new enrollee 
referred.

Individuals who express interest in participation 
receive further explanation of the study and what partici-
pation entails. They are then briefly screened for eligibil-
ity, and an appointment is made. On the first visit, further 
explanation of the study is provided, consent is obtained, 
eligibility is confirmed, and baseline tests are adminis-
tered. A sensor installation team places the telematic and 
video sensors in the participants’ vehicle once consent is 
obtained and eligibility confirmed.

Sensor instrumentation
The in-vehicle sensor network uses open-source hard-
ware and software components to reduce the time, risks, 
and costs associated with developing in-vehicle sensing 
units. In-vehicle sensor systems are kept simple and com-
pact by minimizing complex wiring, limiting the size of 
the sensing units, and limiting the number of sensors in a 
vehicle to support the unobtrusiveness of in-vehicle sen-
sors. Each in-vehicle sensor system is comprised of two 
distributed sensing units: one for telematics data and the 
other for video data.

Telematic units
The telematics unit of the in-vehicle sensor system is 
built upon Raspberry Pi which enables the modification 
and adaptation of telematics sensor data types, sampling 
frequencies, and onboard data logging algorithms. A 
vehicle’s On-Board Diagnostic (OBD) port provides 12-V 
power to a telematics unit. Furthermore, the telematics 
unit has a smart power control system based on the volt-
age of an OBD port to prevent battery drainage. The tele-
matics unit uses ten mA (milliamps) up to 500 mA when 
a vehicle is in use or not in use, respectively. The proces-
sor of the telematics units has a heat sink to provide sta-
ble and reliable operations in Florida’s hot climate.

The telematics sensor provides three data types: Iner-
tial measurement unit (IMU), OBD, and GPS data. 
IMU data comprise 3-axial acceleration and 3-axial 
gyroscope (e.g., angular velocity) to capture vehicles’ 
dynamic motions and orientations. IMU data will be 
processed to determine hard braking, hard accelera-
tions and hard turns, and GPS data. It also includes a 
timestamp, latitude, longitude, altitude, course over 
ground (COG), and the number of communicating sat-
ellites. The first four will constitute the trajectory of 
a vehicle and be used to analyze travel patterns (e.g., 
travel distance, trip purpose). COG data will be used 
to calculate the heading information of a vehicle. The 
number of satellites connected to GPS sensors will be 
used to analyze the accuracy of GPS information. A 
minimum of four satellites provides the roughest esti-
mation of location, while 7 to 8 satellites are needed 
to estimate an accurate location within 10–11 yards 
[18]. The sampling rates of the IMU sensor, gyroscope, 
and GPS data are set to 12.5  Hz, 25  Hz, and 1  Hz, 
respectively.

The telematics sensor employs hybrid data logging sys-
tems: onboard and cloud data logging. High-resolution 
telematics data will be stored in local (in vehicle) data 
stores, manually collected and uploaded to a secure cen-
tral database during participants’ quarterly visits. The 
in-vehicle sensor has cellular connectivity. The Cloud 
database will be used primarily to check the operating 
state of in-vehicle sensors (e.g., error messages, local 
data connectivity, operating condition of camera units 
through Wi-Fi connections), software updates through 
4G connections (e.g., change sampling rates, update 
OBD parameters, firmware update), and troubleshoot 
malfunctioning devices (e.g., remote control through 4G 
connections). See Fig. 1.

Video unit
The video unit consists of the MDVR (Digital Video 
Recorder), a driver-facing camera, and a forward-facing 
camera (see Fig. 2). The MDVR has a storage unit with a 
capacity of 256 GB, which allows storing the video from 
both cameras for a period of 3 months. The MDVR has 
built-in AI functions that analyze video in real-time. The 
driver-facing camera is mounted in the left corner of the 
windshield and is directed to the driver’s face to analyze 
his/her behavior and facial expressions. Table  1 shows 
a list of indices that are analyzed by the driver- facing 
camera.

The forward-facing camera is mounted under the rear-
view mirror and is used to record events external to the 
vehicle. Table 2 shows the list of indices that are recorded 
and analyzed using the front-facing camera.



Page 5 of 13Tappen et al. BMC Geriatrics          (2023) 23:854  

Cognitive battery
Measure selection
The team assembled the neuropsychological assess-
ment protocol with two aims: 1. To classify participants 
into three diagnostic groups: mild cognitive impairment 
(MCI), early dementia, and unimpaired (normal). 2. To 
detect subtle changes over time in these measures inde-
pendent of clinical assessments, particularly in executive 
function and visual attention, which are the cognitive 
domains most strongly associated with driving variables.

To fulfill these aims, two groups of tests were assem-
bled: A clinical battery including assessments of cog-
nition, functioning in daily activities, and mood 
(depression), and an additional set of tests including 
executive function and attention.

Clinical battery
Global cognitive function
The Montreal Cognitive Assessment (MoCA), is a measure 
of global cognitive function [17] originally developed to 
detect mild cognitive impairment (MCI) and now fre-
quently used as a screening test. It is a 10-min test that 

assesses short-term memory, visuospatial function, exec-
utive function, attention, concentration, working mem-
ory, language, and orientation.

Executive function
Trail Making Test [19–21] is predominantly a measure 
of divided attention and two components of executive 
function, cognitive response set maintenance and shift-
ing. The primary outcome measure for each TMT is 
time in seconds. Additionally, a derived Trails B/Trails A 
ratio will be calculated to obtain a relatively independent 
measure of executive control [22].

The Stroop-Color Word Test (SCWT) is a neuropsy-
chological test used in both clinical and experimental 
settings [23]. This test measures the ability to inhibit cog-
nitive interference that may occur while processing two 
stimuli simultaneously. The processing of one stimulus 
(e.g. color) may interfere with the second stimulus (e.g. 
word) processing, causing a Stroop Effect, in which the 
participant may confuse one stimulus for the other. Par-
ticipants will be tested for color blindness prior to admin-
istration of this test.

Fig. 1 The architecture of telematic units
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Semantic memory

Loewenstein-Acevedo Scales of Semantic Interference 
and Learning (LASSI-L) Participants are tasked with 

remembering two lists with 15 words each including 
fruits, musical instruments, or clothing. The words are 
presented one at a time on cards and are read by the par-
ticipant. Participants are made aware of the semantic 

Fig. 2 A Installation of AI (Artificial intelligence)‑embedded cameras. The Advanced Driver Assistance System (ADAS) camera faces outwards 
and is located at the top center of the windshield. The Driver Monitoring System (DMS) faces the participant driver and is located at the bottom left 
of the windshield. B Close‑up of the Artificial Intelligence Module Digital Video Recorder (MDVR). C The ADAS and the DMS

Table 1 Driver‑facing camera indices

Behavior Indices Description

Face detection AI algorithm detects the face of the driver and the driver’s features.

Eye detection AI algorithm detects the eyes and whether they are open or closed.

Yawning Using eye and mouth detection, yawning is detected.

Distraction Head‑pose estimation technique is applied to detect distraction.

Smoking Mobile Phone Use Driver’s smoking and use of mobile phones are detected using an AI algorithm.

Table 2 Forward‑facing camera indices

Behavior Indices Description

Traffic Sign Detection AI algorithm detects traffic signals and monitors if the driver runs a red traffic light.

Object Detection AI algorithm detects objects on the road, such as pedestrians or cyclists crossing 
the road, curbs or barriers, and nearby vehicles.

Lane Crossing AI algorithm detects lane departure.

Near‑Collision AI algorithm can detect an object or a vehicle that is close to the driver’s car.

Pedestrian Detection AI algorithm detects whether the driver yields when a pedestrian crosses the street.
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categories. This is followed by a free recall trial and then 
cued recall trials for each of the 3 categories. List A is 
presented again, and an additional cued recall trial for 
each category is conducted. A second list (List B) is sub-
sequently presented, followed by a free recall trial, then 
three cued recall trials (one per category). List B is pre-
sented for a second time, with another round of cued 
recall trials. Then the participant is asked to think back 
to List A followed by the free recall and cued recall trials 
of List A. Participants are allowed 60 s during free recall 
trials and 20  s for each semantic category during cued 
recall trials. After 20 min, there is a delayed free recall of 
both lists. Previous analyses of the LASSI-L have demon-
strated its sensitivity in differentiating between MCI and 
cognitively normal participants [24]. Semantic interfer-
ence tasks similar to the LASSI-L have been shown to 
be valid across participants with different cultural back-
grounds [25].

Logical memory The Craft Story is a logical memory 
test that typically takes 20  min to administer [26]. The 
examiner reads a short story of approximately 60 words 
aloud and then asks the individual to recall as much 
detail as possible both immediately and after a 20-min 
delay.

Visuospatial and visuomotor
The Benson Figure Drawing (BFD) [27] has been used to 
evaluate visuospatial cognition in dementia. The patient 
is asked to copy a figure with no limit on response time.

Language

Naming The Multilingual Naming Test (MINT) 
assesses confrontation naming with 32 pictures of objects 
[28]. It detects naming deficits in patients with MCI or 
AD [29].

Verbal Fluency (VF) will be assessed using category (ani-
mals) [30] and phonemic (letters P and F) fluency [31]. 
Successful performance on word fluency tasks requires 
executive functions such as inhibiting words that do not 
conform to the rules of the task. Although often con-
ceptualized as measuring executive functioning, recent 
analyses showed that language processing is the critical 
component [32].

Functional ability measures
The Functional Activities Questionnaire (FAQ) measures 
instrumental activities of daily living (IADLs) affected by 
changes in cognition, such as preparing balanced meals 
and managing personal finances [33, 34].

Everyday Cognition (ECog) [35] consists of one global 
everyday function scale and six subscales (Everyday 
Memory, Language, Visuospatial Abilities, Planning, 
Organization, and Divided Attention). The ECog has 
shown sensitivity to MCI [35, 36].

Mood
The Geriatric Depression Scale-Short form (GDS-15) [37, 
38] will be used to measure the level of depression symp-
tom severity.

Clinical rating
The Clinical Dementia Rating Scale (CDRS) [39] is a 
5-point scale used to quantify the severity of cognitive 
impairment symptoms. Six domains of cognitive perfor-
mance are measured: Memory, Orientation, Judgement 
and Problem-solving, Community Affairs, Home and 
Hobbies, and Personal Care. These domains are relevant 
to the diagnosis and severity of Alzheimer’s Disease and 
Dementia. The CDRS score is derived from information 
collected from an informant (study partner) interview as 
well as a participant interview.

Additional measures
Executive function

Cogstate: Identification (IDN) task The Identification 
(IDN) [40] task is a simple choice reaction time paradigm 
that measures reaction time and decision-making.

Arrow Flanker Task (AFT) The Flanker Task [41, 42] is 
a neuropsychological task that measures inhibition using 
non-verbal stimuli such as arrows. It assesses the ability 
to suppress unrelated responses.

Cogstate: One Back (ONB) and Two Back (TWOB) 
task These two tasks [40] assess working memory and 
attention.

Cogstate: The Groton Maze Learning Test (GMLT) [40] 
is designed to measure executive function using a maze 
learning paradigm.

Visual attention
The Useful Field of View test (UFOV) is a measure of three 
perceptual-cognitive abilities: processing speed, divided 
attention, and selective attention. These three tasks rep-
resent higher-order cognitive functioning required for 
safe vehicle driving [43]. The UFOV software (version 
6.1.4; Visual Awareness Research Group Inc.) will be 
used.
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Clinical diagnosis
A clinical diagnosis will be made using an algorithm that 
has demonstrated reliability and validity in the diagnosis 
of MCI and dementia [44]. It combines the CDR clinical 
ratings with the neuropsychological test-based diagno-
sis (see Table 3). Cases in which there is a disagreement 
between the clinical ratings and test results will be pre-
sented to an expert panel of 4 clinical experts (2 neu-
ropsychologists, a neurologist, and a geriatric nursing 
specialist) at a consensus diagnostic panel meeting.

Study procedures
Testing locations
Participants will be recruited from Broward and Palm 
Beach Counties in Southeast Florida. Florida Atlan-
tic University (FAU) has several campuses in Broward 
and Palm Beach Counties. FAU’s Memory and Wellness 
Center is on the main Boca Raton campus and will serve 
as a testing and sensor installation/maintenance site as 
will the Clinical Research Unit, also on the main campus. 
Secondary sites will be on the Davie campus in central 
Broward, and several cooperating places of worship and 
community centers for the convenience of those older 
drivers who customarily drive within a restricted range. 
A subaward to colleagues in Psychology, Engineering, 
and Nursing at the University of Central Florida (UCF) 
will support the recruitment and testing of eligible par-
ticipants on the UCF campus in Orlando, Florida. Data 
will be transmitted securely to FAU for analysis.

Enrollment procedures
Older drivers who express an interest in participation 
will receive an explanation of the study and the activi-
ties that participation entails. They will then be screened 
for eligibility and proceed to the first set of assessments. 
An installation team will place the telematics and video 

sensors in participants’ vehicles while the cognitive tests 
are administered.

Scheduling over 3 years
The project aims to identify cognitive changes over time 
that may be associated with indicators from the in-vehi-
cle sensors. Therefore, cognitive assessments are admin-
istered every 3, 6, and 12  months (depending on the 
tests) for 3 years, for a total of 13 quarterly assessments. 
Every 3 months the following cognitive assessments will 
be administered: MoCA, FAQ, GDS-15, and the DSAQ 
(Driver Sensor Acceptability Survey which responds to 
Aim 3 of the study (See list of abbreviations)). The IDN, 
GMLT, ONB, and TWOB will be administered at every 
time point except for Visit 1 in order to keep the first visit 
under 3 h. Since we will use parallel forms of these tests, 
they do not need a double baseline. The following assess-
ment tools will be administered beginning with Visit 2 
and again on Visit 3 for the double baseline, then every 6 
months: ECog, BFD, TMT, AFT, SCWT, VF, and MINT. 
The UFOV will be administered on Visits 1 and 2, then 
repeated every 6 months. Lastly, the LASSI-L and Craft 
Story will be administered at visits 1 and 2 for the double 
baseline and then every 12 months. The MMSE will be 
administered on visits 1, 5, 9, and 13.

Preparation of assessors and psychometricians
Experienced nursing and psychology students and post-
doctoral fellows will perform the clinical and cognitive 
assessments. These research assistants will go through 
intensive training in the administration and scoring of 
the assessments. They are first exposed to these pro-
cedures via training videos followed by one-to-one 
observation sessions with clinicians and experienced psy-
chometricians who explain the administration and scor-
ing procedures for each assessment measure in detail. 
After training, each research assistant will submit videos 

Table 3 Algorithmic diagnosis including Clinical Dementia Rating (CDR) scores and neuropsychological test‑based diagnosis of 
normal, amnestic and non‑amnestic Mild Cognitive Impairment (aMCI; naMCI) and early (eMCI) and late MCI (LMCI)

[Rule 1: CDR-sb score > 4.0 indicates dementia diagnosis (except when NpDx is Normal)]

[Rule 2: CDR-sb score of 2.5 to 4.0 indicates an LMCI diagnosis (except when NpDx is Normal)]

[Rule 3: CDR-sb score of 0.5 to 2.0 indicates an eMCI diagnosis (except when NpDx is Normal)]

[Rule 4: Pre-MCI is diagnosed when CDR-sb 0.5–4.0 and NpDx is normal, or CDR-sb = 0 and NpDx = aMCI or naMCI]

CDR-sb = CDR sum of boxes, aMCI = Amnestic MCI, naMCI = Non-amnestic MCI, LMCI = Late MCI, eMCI = Early MCI

CDR Sum of Boxes Neuropsychological Diagnosis (NpDx)

Normal aMCI naMCI Dementia

0 Normal PreMCI –NP PreMCI‑NP Consensus Conference

0.5–2.0 PreMCI Clinical eMCI eMCI Consensus Conference

2.5–4.0 PreMCI Clinical eMCI eMCI LMCI

4.5+ Consensus Conference Dementia Dementia Dementia
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of themselves performing the clinical and psychometric 
assessments with non-participant volunteers. Individual 
feedback is provided regarding any deviations from the 
standard administration, and if necessary, a second video 
is requested. Approval to conduct assessments indepen-
dently is obtained after completing an additional 4–6 
shadowing sessions, during which the newly trained 
research assistants will be observed administering the 
assessments.

The clinical diagnosis will be made by a team of neu-
rologists, neuropsychologists, and geriatric nurses who 
review the clinical and psychometric data using the Algo-
rithmic Diagnosis procedure described above. Clinical 
personnel are blinded to the data driving the decision in 
order to avoid potential bias in the diagnosis.

Controlling for practice effects
Important issues in this study of cognitive change are the 
potential for practice and retest effects in performance on 
repeatedly administered cognitive tests, a problem com-
mon to longitudinal studies. Although we may assume 
that these effects are observed in all clinical groups, they 
may not be equivalent across groups.

While there is no clear consensus on the best methods 
to address this problem, we will address it by:

• Using alternative forms with equivalent psycho-
metric properties where available. The IDN, ONB, 
TWOB, and the GMLT are short and repeatable 
assessments that are unaffected by language, there-
fore we are able to have a large stimulus set that is 
controlled and randomized so that each participant 
has a unique stimulus set at each time point. The 
AFT uses a set of pseudo randomizations controlling 
for the number of congruent and incongruent trials.

• The most prominent practice effects generally take 
place between the first and the second administra-
tion of a test. For this reason, we will use a double 
baseline design in which the second assessment (3 
months after the first) will be used as the baseline for 
all cognitive measures.

• In the statistical analysis we will include reliable 
change indices (RCIs), and regression base analyses 
with correction for practice effects.

Statistical analysis
Data processing phase
Data processing will occur in three steps. First, several 
preliminary models will be created to provide greater 
flexibility in analyzing the relationships between the driv-
ing behaviors and cognition over time. Various models 

such as linear mixed models and non-linear functions, 
such as splines, will be assessed.

The second processing step is feature extraction. Vari-
ables will be created from the raw data, with mean, 
standard deviation, and assessment of normality ana-
lyzed. During this step the telematic and video data will 
be standardized so that all of the features will account for 
driving speed and length of time driving during each trip. 
Since the telematic and video data have varying scales, 
data will be normalized using the minmax approach. 
Lastly, external weather and traffic conditions data will be 
added to the database.

The third processing step is the reduction of the num-
ber of features to prevent overfitting the model as well 
as to reduce the complexity of the model. Two strategies 
will be used to complete the feature selection step. Elas-
tic net regression adds a penalty and bias to the models 
resulting in the retention of only the critical variables. 
These results will be compared to the results for the 
second method, SHAP (Shapley Additive exPlanations) 
analysis, which is a global feature selection method that 
will be used to compute the feature importance of each 
variable in predicting cognitive change [45].

Predictive modeling phase
Two different methods will be used to model the predic-
tion of changes in cognitive functioning followed by a 
sensitivity analysis. First, a traditional predictive mod-
eling method using a linear mixed effects (LME) model 
with time varying covariates will be conducted [46]. This 
LME method will use the processed data aggregated at 
weekly, monthly, and 3-month intervals along with the 
features determined by the SHAP analysis. The second 
method will use a machine learning recurrent neural 
network (RNN) approach to loop over and pass infor-
mation from one step to another in the network allow-
ing for the capability to effectively incorporate temporal 
(time) dependencies in longitudinal data [47]. With RNN, 
data contains data sequences from k time steps at each 
time point (ti), input features (Xti), and internal state 
(memory) from the previous time step (ht(i−1)) allowing 
for RNN to identify patterns hidden in the sequence of 
the data not detectible by conventional neural networks 
[48]. The Driving Behavior Indices (DBIs) algorithms 
generated will be assessed for ability to predict changes 
in overall cognitive functioning as well as other specific 
domains.

Driving behavior (normalized driver behavior indices)
Driver Behavior Indices (DBIs) will be estimated from 
the telematics and vision sensor data. The selection of 
the DBIs is designed to reflect older drivers’ cognitive 
function and driving performance. To account for the 



Page 10 of 13Tappen et al. BMC Geriatrics          (2023) 23:854 

variation in participants’ driving frequency and mileage, 
the DBIs will be normalized by the total number of trips, 
left turns, traveled intersections and/or total mileages. 
The DBIs will be evaluated for each driver and will be 
summarized on a daily, weekly, and monthly basis. DBIs 
are classified into four categories. Examples of DBIs are 
shown in Table 4.

Travel patterns
DBIs include travel patterns that will be analyzed based 
on vehicles’ trajectories, combined with map-matching 
algorithms to relate high-precision positioning data to 
map data (e.g., traveled road names, the types of roads, 
and speed limits). The inclusion of map-matching algo-
rithms and weather data is required to analyze trips on 
freeways and during severe weather conditions, respec-
tively. These travel-pattern-related DBIs are known to be 
indicative of the changes in older drivers’ cognition and 
physical functions since they tend to incorporate delib-
erate avoidance strategies to compensate for age-related 
deficits [49].

Abnormal driving
Advancing abnormal driving pattern detection requires 
novel multi-attributed spatial network queries for Spatial 
Network Database (SNDB) due to the heterogeneity of 
data sources, such as map data, weather, and location of 
stop signs. For example, queries for identifying abnormal 
driving patterns need to combine interrelated risk factors 
under the unified index and analyze these factors based 
on topological and geospatial reference systems. Further-
more, drivers’ potential route selection can be affected 
by traffic volume and weather conditions, which also 
necessitate developing domain specific SNDB queries to 
achieve an accurate estimation of abnormal traffic pat-
terns. The identification of ignoring traffic signals or stop 
signs will use the temporally detailed network status (e.g., 
volume and speed), the number of lanes, and localized 
spatial information.

Reaction time
The reaction time estimation requires the integration 
of driving scene awareness, eye tracking, and telematics 
data. The reaction time to traffic lights and taillights will 
be analyzed by considering various factors, such as dis-
tance to the objects and vehicle speed.

Braking patterns
Hard-braking-related DBIs will be used to monitor older 
drivers’ braking patterns and eye movements. Highly-
detailed braking-related data will be collected from our 
telematics and vision sensors. For example, the data 
fusion of high-precision trajectories, map data, and 
machine vision will indicate the causes of hard brak-
ing events (e.g., stop-and-go conditions at an intersec-
tion, tailgating, losing focus, road conditions). Vision 
sensors will relate hard braking to stop signs or traffic 
lights, providing detailed glance patterns at an intersec-
tion. Importantly, the data analytics of braking patterns 
must consider whether drivers might be aware of stop 
signs, traffic signals, and potholes in advance. This can 
be closely related to memory function. For example, driv-
ers are usually aware of the location of potholes and stop 
signs in advance when they repeatedly drive the routes 
in their daily life (e.g., commuting, grocery shopping). 
If there are changes in their cognitive functioning, they 
would react differently to traffic signs or potholes than 
they did prior to the changes.

To address the third study aim, acceptability of the 
installed sensor systems, the psychometric properties of 
the DSAQ will be evaluated and differential effects by 
demographic group (age, gender, ethnic group member-
ship, education) evaluated. Thematic analysis [50] of the 
interview data on acceptability will provide explanations 
for the ratings obtained on the DSAQ.

Ethical considerations
Prior to enrollment, all potential participants receive 
an explanation of the study including what participa-
tion entails and sign a consent approved by the Florida 

Table 4 Driver behavior indices

Categories DBIs Data Analytics

Travel Patterns number of trips, miles driven, miles on the highway, miles dur‑
ing the night, daytime, and severe weather, highway miles, etc.

map‑matching, data queries, map data, weather data

Abnormal Driving wayfinding, getting lost, ignoring traffic signals and signs, near‑
collision events, distraction, drowsiness, etc.

machine vision, shortest path, outlier detection, trajectory 
clustering, frequent graph mining

Reaction time reaction time to traffic light change, front‑vehicle taillight, 
pothole, etc.

vision sensing, data fusion, vibration analysis, machine learning

Braking Patterns eye movements and IMU data at stop signs, traffic signals, tail 
lights, losing focus, potholes, etc.

signal processing, gaze estimation, data mining, machine vision
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Atlantic University Committee for the Protection of 
Human Subjects. Study procedures and consent pro-
cesses were reviewed and approved by the University 
Committee for the Protection of Human Subjects.

Anticipated challenges
Several challenges to the successful implementation of 
this protocol are anticipated. Participation in the study 
requires a commitment from the participant to attend 
testing and data retrieval from the installed sensors four 
times a year for 3 years. A secondary concern is possible. 
participant hesitation to allow a video camera to focus on 
the participant’s face. Should this become a problem in 
the recruitment of participants, otherwise eligible enroll-
ees will be allowed to forego the driver-facing camera, 
and a comparison of the accuracy of cognitive change 
detection with and without the driver-facing video data 
will be added to the data analysis plan.

There may also be some concern about driver infor-
mation becoming available to insurers. The Certificate 
of Confidentiality issued by the National Institutes of 
Health prevents insurance companies from accessing this 
information without participant consent and should alle-
viate this concern.

A more technical concern is the ability to assign driving 
data to the correct individual when a vehicle is driven by 
more than one person, most likely spouses who share the 
vehicle. The solution will be to develop and train a facial 
comparison algorithm to distinguish the two drivers.

Discussion
A naturalistic 3-year longitudinal study will be conducted 
to test the ability of an in-vehicle sensor system of tele-
matic and video sensors to obtain data that can signal a 
change in the driver’s cognitive status will be tested. The 
innovation of this research project lies in the unobtru-
sive, rapidly, and readily available in-vehicle sensing and 
monitoring system built upon modern open-source hard-
ware and software using existing techniques to develop 
and customize the components and configure them for 
this new purpose. We have hypothesized that this system 
will be capable of detecting a change in cognitive status 
among older drivers who are developing MCI or exhibit-
ing symptoms of early-stage dementia.

Conclusions
It is well established that individuals with progressive 
dementias are eventually unable to drive safely, yet 
many remain unaware of their cognitive decrements. 
Current screening and evaluation services can test only 
a small number of individuals with cognitive concerns, 
missing many who need to know if they require treat-
ment. Given the increasing number of sensors being 

installed in passenger vehicles and their increasing 
acceptability, reconfigured in-vehicle sensing systems 
could provide widespread, low-cost early warnings of 
cognitive change and decline to the large number of 
older drivers on the road in the U.S. and elsewhere. The 
proposed testing and evaluation of a readily and rapidly 
available, unobtrusive in-vehicle sensing system could 
provide the first step toward future widespread, low-
cost, early warnings of cognitive change for this large 
number of older drivers.
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