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Abstract
Background Frailty indicators can operate in dynamic amalgamations of disease conditions, clinical symptoms, 
biomarkers, medical signals, cognitive characteristics, and even health beliefs and practices. This study is the first to 
evaluate which, among these multiple frailty-related indicators, are important and differential predictors of clinical 
cohorts that represent progression along an Alzheimer’s disease (AD) spectrum. We applied machine-learning 
technology to such indicators in order to identify the leading predictors of three AD spectrum cohorts; viz., subjective 
cognitive impairment (SCI), mild cognitive impairment (MCI), and AD. The common benchmark was a cohort of 
cognitively unimpaired (CU) older adults.

Methods The four cohorts were from the cross-sectional Comprehensive Assessment of Neurodegeneration and 
Dementia dataset. We used random forest analysis (Python 3.7) to simultaneously test the relative importance of 
83 multi-modal frailty indicators in discriminating the cohorts. We performed an explainable artificial intelligence 
method (Tree Shapley Additive exPlanation values) for deep interpretation of prediction effects.

Results We observed strong concurrent prediction results, with clusters varying across cohorts. The SCI model 
demonstrated excellent prediction accuracy (AUC = 0.89). Three leading predictors were poorer quality of life ([QoL]; 
memory), abnormal lymphocyte count, and abnormal neutrophil count. The MCI model demonstrated a similarly 
high AUC (0.88). Five leading predictors were poorer QoL (memory, leisure), male sex, abnormal lymphocyte count, 
and poorer self-rated eyesight. The AD model demonstrated outstanding prediction accuracy (AUC = 0.98). Ten 
leading predictors were poorer QoL (memory), reduced olfaction, male sex, increased dependence in activities of 
daily living (n = 6), and poorer visual contrast.

Conclusions Both convergent and cohort-specific frailty factors discriminated the AD spectrum cohorts. 
Convergence was observed as all cohorts were marked by lower quality of life (memory), supporting recent research 
and clinical attention to subjective experiences of memory aging and their potentially broad ramifications. Diversity 
was displayed in that, of the 14 leading predictors extracted across models, 11 were selectively sensitive to one 
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Background
Frailty can be characterized by the presence of multiple 
constituent factors representing dynamic and hetero-
geneous combinations of geriatric conditions, clinical 
symptoms, biomarkers, medical signals, cognitive char-
acteristics, and even health beliefs and practices. A lead-
ing and productive approach to evaluating frailty involves 
calculating a continuous index that reflects the number of 
such deficits acquired relative to the total number consid-
ered [1]. Emerging evidence from separate studies indi-
cates that higher frailty levels are linearly (and positively) 
associated with subjective cognitive impairment (SCI) [2, 
3], mild cognitive impairment (MCI) [4], and Alzheimer’s 
disease (AD) [5, 6]. Accordingly, we reasoned that frailty 
represents a promising framework for identifying the key 
factors that predict geriatric conditions representing pro-
gression along an AD spectrum.

Available studies evaluating frailty and clinical risk for 
SCI, MCI, or AD have successfully used overall summary 
frailty scores (such as indices or phenotypes, varying 
primarily in level or magnitude), without specific atten-
tion to the number of indicators or breadth of modali-
ties represented across the predictors. However, several 
recent reviews have expressed the importance for studies 
to investigate whether there are specific frailty indicators 
or combinations thereof that are differentially associated 
with AD and related neurodegenerative disorders [7, 8]. 
In particular, it may be profitable to apply integrated, 
data-driven neuroinformatics approaches [7, 9–12] to 
exploring whether and which subsets of frailty factors 
might optimize differential prediction of a spectrum of 
geriatric and impairment conditions.

The present study builds on the foundation of a leading 
frailty research tradition that emphasizes the importance 
of comprehensive collections of frailty-related factors 
[13, 14] but focuses on identifying salient indicators that 
differentially distinguish cognitively unimpaired (CU; 
or asymptomatic) groups from those occupying clinical 
positions along a continuum of impairment and demen-
tia. The overall objective was to determine which frailty 
indicators discriminate a CU cohort from SCI, MCI, and 
AD cohorts using computationally competitive machine 
learning (ML) classifier analyses. Individuals classified 
as having SCI report subjective cognitive complaints 
or concerns in the absence of objective signs of impair-
ment in measured aspects of cognitive function [15]. 

Although phenotypically similar to CU aging, this con-
dition may represent an early and potentially modifiable 
risk phase for exacerbated objective cognitive decline 
[10, 16], as well as, successively, MCI [17] and AD [18]. 
Among the progressive clinical differences between CU, 
SCI, MCI, and AD cohorts are accumulation of multiple 
modalities of AD risk factors and symptoms [19, 20], as 
well as increased severity of functional and cognitive 
impairment owing to accumulating AD neuropathology 
[21, 22]. Accordingly, specific hypotheses for this study 
included cohort differences in (a) detected clusters of 
important predictors, (b) accuracy of prediction models, 
and (c) clinical intensity of important frailty indicators.

Recently, ML classifier approaches have been applied 
to modeling large-scale and multi-modal indicators of a 
range of morbidities and perturbations related to vari-
ous biological, medical, and other risk domains that 
negatively influence brain and cognitive health [11, 23, 
24], progression toward neurodegeneration [12, 25, 26], 
and even characteristics of brain resilience to AD-related 
adversities [27–29]. Such approaches have also been 
applied to multi-faceted frailty-related indicators sam-
pled from CU older adults [30–32] and selected geriatric 
clinical cohorts [33–35], though none specifically focused 
on discriminating clinical conditions representing the full 
AD spectrum. Accordingly, the present study is the first 
to our knowledge to determine which indicators, from 
a multi-modal roster of frailty-related deficits and risk 
factors, discriminate CU older adults from those with 
SCI, MCI, or mild AD. The findings have applications to 
detecting novel precision targets for early intervention or 
treatment protocols that produce positive downstream 
effects on offsetting or delaying the incidence or progres-
sion of SCI, MCI, or even AD.

We used newly available data from the Canadian 
Consortium on Neurodegeneration in Aging (CCNA). 
The Comprehensive Assessment of Neurodegenera-
tion and Dementia (COMPASS-ND) dataset features 
well-characterized cohorts of aging and neurodegen-
eration, including CU, three groups associated with the 
AD clinical spectrum, and a large roster of frailty-related 
indicators [36, 37]. We specified three research goals 
(RG) corresponding to a series of three ML-based ran-
dom forest (RF) classifier analyses designed to identify 
the most important factors that discriminate the bench-
mark group (CU) from SCI (RG1), MCI (RG2), and AD 

cohort. A morbidity intensity trend was indicated by an increasing number and diversity of predictors corresponding 
to clinical severity, especially in AD. Knowledge of differential deficit predictors across AD clinical cohorts may 
promote precision interventions.
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(RG3) cohorts. Accordingly, we (a) simultaneously tested 
a comprehensive set of multi-modal morbidities, deficits, 
and risk characteristics and (b) compared and contrasted 
the important predictors of the three clinical cohorts. 
We then integrated an explainable artificial intelligence 
method— Tree Shapley Additive exPlanation values 
(Tree SHAP) [38]— which facilitated deep interpreta-
tion of the direction, prevalence, and magnitude of pre-
diction effects generated by the black-box RF algorithm 
[39]. Such interpretation goals are particularly relevant in 
clinical aging and dementia research as they point toward 
potential precision targets for intervention [38]. In sum, 
this analytical approach was expected to reveal previ-
ously unknown signatures of elevated risk associated dif-
ferentially with SCI, MCI, and AD clinical status.

Methods
Participants
A detailed methodological summary of the COMPASS-
ND study has been previously published [36, 37]. Briefly, 
participants were recruited from 31 data collection sites 
across Canada, most of which were academic clinical-
research settings. Ethics approval was obtained from 
the Research Ethics Committee or Institutional Review 
Board of each participating data collection site. All par-
ticipants and their legal guardians provided written 
informed consent. Older adults with the following cri-
teria were ineligible to participate in the COMPASS-ND 

study protocol [36, 37]: (a) presence of significant known 
chronic brain disease, multiple sclerosis, a serious devel-
opmental handicap, malignant tumors, Huntington’s dis-
ease, and other rarer brain illnesses; (b) ongoing drug or 
alcohol abuse; (c) total score < 13 on the Montreal Cog-
nitive Assessment [40]; (d) symptomatic stroke within 
the previous year; and (e) unwilling or unable to undergo 
magnetic resonance imaging scan. Eligible study partici-
pants (a) were sufficiently proficient in English or French 
and (b) had a study partner with whom they interacted on 
a weekly basis. Clinical diagnostic status was determined 
by experienced clinicians involved in the COMPASS-ND 
study using current diagnostic criteria [36]. For the cur-
rent study, specific exclusionary criteria were a diagnosis 
of subcortical ischemic vascular MCI, dementia of mixed 
etiology, frontotemporal dementia, Parkinson’s disease, 
and Lewy body dementia. We assembled data for deeply 
phenotyped participants representing the following 
cohorts: CU (n = 60), SCI (n = 36), MCI (n = 116), and AD 
(n = 43). Descriptive statistics for the final sample are pre-
sented in Table  1 (N = 255; Mage = 71.18, SD = 6.81; 58% 
female; 92% non-Hispanic White).

Measures
Multi-modal frailty-related indicators
We began by assembling 102 frailty-related indicators of 
morbidity, deficits, and risk factors from the COMPASS-
ND database. They were determined to represent the fol-
lowing 17 frailty-related domains: instrumental activities 
of daily living (ADL), basic ADL, physical activity, mobil-
ity, QoL, anthropometric measures, sensory function, 
sleep, functional indicators, exhaustion, self-reported 
health, cardiorespiratory health, clinical symptoms or 
diseases, emotional well-being, oral health and nutri-
tional factors, fluid biomarkers, and sex. Procedures for 
collecting these data from study participants included 
self-report, physical examinations, and formal tests with 
standardized scales. Binary indicators were coded as 0 
(deficit absent) or 1 (deficit present). Continuous indica-
tors were coded such that values ranged between 0 (no 
deficit recorded) and 1 (deficit is maximally expressed) 
[1]. The only exception to this practice was the polyphar-
macy variable, which ranged between 0 (0–4 medica-
tions) and 2 (14+ medications) [41, 42]. Where applicable, 
cut points for continuous indicators were provided in 
the COMPASS-ND database or derived from previous 
empirical research. We note that some of the present 
indicators were used in an earlier study to operationalize 
a continuous index and examine frailty prevalence across 
several clinical cohorts in the COMPASS-ND database 
[41].

Table 1 Demographic and Clinical Characteristics 
Disaggregated by Cohort
Characteristic CU

(n = 60)
SCI
(n = 36)

MCI
(n = 116)

AD
(n = 43)

sig

n (% female) 49 
(82%)a

30 
(83%)a

57 (49%)b 13 
(30%)c

***

Age (years) 69.23 
(5.52)a

69.62 
(6.81)a

71.16 
(6.48)a

75.26 
(7.70)b

***

Education (years) 15.84 
(3.15)

17.49 
(3.11)

15.75 
(3.89)

15.34 
(4.37)

ns

n (% married) 37 
(62%)a

17 
(47%)a

75 (65%)a 35 
(81%)b

*

n (% non-Hispanic 
White)

58 
(97%)a

34 
(94%)a,b

100 
(86%)b

42 
(98%)a

*

n (% community 
dwelling)^

60 
(100%)

36 
(100%)

116 
(100%)

43 
(100%)

ns

n (% residing with 
spouse)^^

43 
(72%)a,b

20 
(56%)b

85 (73%)a 37 
(86%)a

*

MoCA 27.90 
(1.50)a

27.81 
(1.33)a

24.28 
(3.08)b

18.63 
(3.56)c

***

Results are presented as mean (standard deviation) unless noted as otherwise. 
p-values are based on one-way analysis of variance (with post-hoc Tukey 
tests) or chi-square tests, as appropriate. ^ Self-reported as living in a house, 
apartment, or condo. ^^ Self-reported as living with a spouse or significant 
other. a,b,c Denotes values that differ significantly. Abbreviations: CU, cognitively 
unimpaired; SCI, subjective cognitive impairment; MCI, mild cognitive 
impairment; AD, Alzheimer’s disease; sig, significance; ns, not significant; MoCA, 
Montreal Cognitive Assessment.
*p-value < 0.05 ***p-value < 0.001.
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Fluid biomarkers
Biosamples of blood, saliva, and urine were collected 
using established operating procedures [36]. We assem-
bled data for 67 fluid biomarkers that were dichotomized 
in the COMPASS-ND database as 0 (within established 
reference range) or 1 (outside established reference 
range) [43, 44].

Screening prospective frailty-related indicators and fluid 
biomarkers
We screened the prospective frailty-related indicators 
and fluid biomarkers for eligibility for inclusion in two 
standard pre-processing steps. First, we assembled three 
separate datasets (one for each pairwise RF comparison) 
and removed indicators with a rate of missingness > 50%. 
This criterion cut-off accords with previous ML [45–47] 
and frailty research [34]. Second, we removed categorical 
indicators in which < 10% of participants in each cohort 
were recorded as having the associated deficit (i.e., noisy 
features). Removing such indicators increases learning 
accuracy, facilitates model interpretation, and decreases 
running time [35, 48]. The final number of indicators 
submitted to RF analysis was 64 for SCI, 65 for MCI, 
and 75 for AD (total n of individual indicators across 
cohorts = 83). For the SCI model, the average percentage 
of missing data was 2% for binary predictors and 0.4% for 
continuous predictors. For the MCI model, the average 
percentage of missing data was 2% for binary predictors 
and 0.8% for continuous predictors. For the AD model, 
the average percentage of missing data was 4% for binary 
predictors and 0.7% for continuous predictors. The aver-
age percentage of missing data (i.e., collapsing across 
binary and continuous predictors) was 1% in both the 
SCI and MCI model, and 2% in the AD model. We pres-
ent the 83 frailty-related indicators (disaggregated by 
domain) together with the corresponding response scales 
in Supplement Table 1.

Sex
Biological sex was measured in a binary fashion with 
the available intake item requesting participants to self-
report whether they are male or female.

Analytical approach
The approach involved two integrated analytic steps 
for each RG; viz., ML identification of the leading dis-
criminating factors and explainable artificial intelligence 
method (Tree SHAP) for deep interpretation of predic-
tion effects.

Step 1: Machine learning predictor analyses
The relative predictive importance of the evaluated indi-
cators in discriminating CU from SCI, MCI, or AD was 
accomplished with RF classifier analysis [49]. Analyses 

were performed using Python (3.8) [50] and the scikit-
learn package (RandomForestClassifier) [51] with the 
following hyperparameters: n_estimators = 1000 [24, 52–
54], max_depth = 3, max_features = auto [39]. RF analy-
sis is a recursive partitioning method, meaning that it 
combines predictions across multiple classification and 
regression trees, each of which is based on a random 
subset of participants (n) and predictors (p) [55]. This 
approach has several advantages relevant to the pres-
ent clinical aging data. First, it has demonstrated utility 
for exploring high dimensional (i.e., n < p) [23, 24, 56] 
and mixed-type datasets (i.e., binary and continuous 
predictors) [23, 24], as well as discriminating selected 
AD-related clinical cohorts [11, 25, 57]. Second, it can 
examine many predictors simultaneously (including the 
possibility of non-linear factor dependencies and com-
plex interactions) and returns a model with high predic-
tion accuracy [39, 55]. Third, it is known to be robust to 
overfitting [58, 59], even in studies characterized by small 
and/or unbalanced (uneven) subsamples [11, 53, 60, 61], 
as in the present study. Third, descriptive variable impor-
tance measures that reflect the impact of each predictor 
on cognitive outcomes can be extracted [39, 62, 63].

RF models were evaluated using stratified k-fold cross-
validation. This approach is recommended when the sub-
samples comprising the pairwise comparison are small 
and/or unbalanced [39]. These models ensure that each 
k-fold (or subsample) contains roughly the same pro-
portion of each cohort as is represented in the overall 
sample. Specifically, we used stratified five-fold cross-
validation to divide each pairwise dataset into five equally 
sized folds. Four of the five folds were used for training 
and the remaining fold was used for testing [64]. This 
process was repeated five times, until each fold had been 
used once for testing. The model then returned the fol-
lowing evaluation metrics, which were averaged across 
the cross-validation folds. The first and main metric was 
the area under the receiver operating characteristic curve 
(AUC), a summary measure of the model’s ability to dis-
tinguish between CU and the targeted clinical cohorts. 
AUC is interpreted such that 0.5 represents chance, 
0.5–0.69 represents poor discrimination, 0.7–0.79 rep-
resents acceptable discrimination, 0.8–0.89 represents 
excellent discrimination, and ≥ 0.9 represents outstand-
ing discrimination [65]. The second metric was accuracy, 
which refers to the total percentage of participants who 
were correctly classified as either CU or as belonging to 
the targeted clinical cohort (i.e., the fraction of true posi-
tives and true negatives over all model classifications). 
The third metric was precision, which represents the 
percentage of participants who were correctly classified 
into the target clinical cohort (calculated as true posi-
tives / (true positives + false positives)). The fourth metric 
was sensitivity (or recall), which reflects the percentage 
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of participants from the target clinical cohort who were 
correctly classified as such (calculated as true positives 
/ (true positives + false negatives)). The fifth metric was 
F1 score, an overall measure of model performance that 
represents a specific combination of precision and sen-
sitivity. Technically, the F1 score is the “harmonic mean” 
(i.e., the reciprocal of the arithmetic mean) of precision 
and sensitivity. As such, it is calculated as 2 x (precision × 
sensitivity) / (precision + sensitivity). Values for the latter 
four metrics (i.e., accuracy, precision, sensitivity, F1 score) 
also ranged between 0 and 1, with higher values denoting 
better classification performance. In studies with unbal-
anced subsamples, AUC and F1 score are the most robust 
indicators of model performance [57]. We report these 
five metrics for each RF classification model but focus on 
AUC and F1 score when evaluating and interpreting (or 
assigning a qualitative label) to model fit.

Missing data were handled using IterativeImputer 
[66]— an advanced imputation approach derived from 
the Multiple Imputation by Chained Equations algorithm 
[66, 67]. IterativeImputer uses regularized linear regres-
sion to estimate (or predict) missing values as a function 
of all the other predictors in the model [51] and is an 
efficient and accurate imputation approach for mixed-
type datasets [45]. Data were assumed to be either miss-
ing completely at random or missing at random [68]. We 
performed these analyses using the default BayesianRidge 
estimator and the sklearn pipeline. The sklearn pipeline 
allowed us to impute missing data (separately) within 
each cross-validation fold, thereby avoiding data leakage 
issues (i.e., between training and testing cross-validation 
folds) which can lead to overfitting, inflated model per-
formance metrics, and reduced generalizability [69]. The 
sklearn pipeline involved the following two steps, which 
were conducted sequentially at each fold. First, missing 
data were imputed. Second, classification analyses were 
performed using RF analysis.

Step 2: Applying explainable artificial intelligence method for 
interpretation
Although RF analysis provides a robust and computa-
tionally competitive context from which to detect lead-
ing discriminative predictors, enhanced interpretations 
of the prediction patterns are afforded in this step. Spe-
cifically, we used Tree SHAP [25, 38, 70], which provides 
researchers with a unified framework for determining the 
relative importance (or model contribution) of the con-
sidered predictors. Briefly, Tree SHAP values are a robust 
analytical tool for (a) determining the relative magni-
tude of each predictor’s effect on model classifications 
while at the same time controlling for overfitting [25], 
(b) converging on a single unique solution that balances 
local accuracy, missingness, and consistency [38], and (c) 

drawing informed conclusions regarding the direction, 
magnitude, and prevalence of prediction effects.

RF analysis provides relative prediction values for all 
analyzed indicators. To aid in interpretation and com-
parison, we select the top 30 predictors in each RF model 
and display them in two Tree SHAP plots. We selected 
this number based on the consideration that the top 30 
predictors in each analysis explained more than 80% of 
the model’s efficiency (or performance). The first fig-
ure displayed for each result is a Tree SHAP waterfall 
plot, which advances interpretation by (a) depicting the 
predictors in descending order of global importance 
(thus the rank ordering is consistent across figures) and 
(b) providing a visual representation of the RF analysis 
results [62]. Regarding the latter, this plot depicts the 
individual and cumulative ratio of the predictors’ con-
tribution to the classification model (represented by the 
bars and curved line, respectively) [61]. The second figure 
for each result is a Tree SHAP summary plot. This figure 
advances interpretation in that (a) each dot represents an 
individual study participant; (b) the color of the dot rep-
resents the participant’s value on the associated predictor 
(red dot = high value, blue dot = low value); and (c) visual 
inspection of the location and distribution (or relative 
spread) of the colored dots along the x axis indicates the 
direction, prevalence, and magnitude of each predictor’s 
effect on the model output [38, 57, 62]. Direction of effect 
is indicated by the color of dots located to the right side 
of the vertical line on the x axis. Specifically, red dots to 
the right side of the vertical line on the x axis indicates 
that high values on the corresponding predictor increases 
risk for being classified into the targeted clinical cohort. 
Conversely, blue dots to the right side of the vertical line 
on the x axis indicates that low values on the correspond-
ing predictor increases risk for classification into the tar-
geted clinical cohort. Effect magnitude is indicated by the 
location of colored dots to the right side of the vertical 
line on the x axis. Specifically, dots located to the far side 
of the vertical line indicate that the corresponding pre-
dictor is associated with high magnitude effects, whereas 
dots clustered on the vertical line indicate that the cor-
responding predictor is associated with null effects. The 
prevalence of effect magnitudes is indicated by the dis-
tribution (or spread) of colored dots to the right side of 
the vertical line on the x axis. Specifically, clustered (or 
densely distributed) dots indicate the corresponding 
effect magnitude is highly prevalent in the study sample. 
Conversely, wide (or increasingly spread) dot distribu-
tions indicate the corresponding predictor is associated 
with lesser prevalent (or more varied) effect magnitudes.
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Results
RG1: discriminating SCI and CU cohorts: machine learning 
analyses and Tree SHAP interpretation
Findings from the RF classifier analysis revealed that 
overall fit (or performance) of this model was excel-
lent (AUC = 0.89; F1 score = 0.72), indicating reliable 

discrimination of these clinically neighbouring cohorts 
(see Table 2 for additional metrics).

As can be seen in the Tree SHAP waterfall plot (Fig. 1), 
the top three predictors are highlighted because (a) they 
have the highest global importance ratings (indexed by 
the composition ratio (i.e., blue bars; see top of Figure 

Table 2 Random Forest Model Evaluation Metrics
RF Model Indicators Tested AUC Accuracy Precision Recall F1 

Score
Discriminating SCI from CU n = 64 0.89 0.79 0.94 0.58 0.72

Discriminating MCI from CU n = 65 0.88 0.76 0.75 0.95 0.84

Discriminating AD from CU n = 75 0.98 0.88 0.98 0.73 0.84
Evaluation metrics reflect average performance of the RF classification model across the five cross-validation folds. Each evaluation metric ranges between 0 and 
1 (higher values denote better performance; see Methods section for further details). Abbreviations: RF, random forest; AUC, area under the receiver operating 
characteristic curve; SCI, subjective cognitive impairment; CU, cognitively unimpaired; MCI, mild cognitive impairment; AD, Alzheimer’s disease.

Fig. 1 Tree SHAP waterfall plot depicting the top 30 predictors of subjective cognitive impairment. Predictors are plotted in descending order of model 
contribution. The bars depict the individual composition ratio (i.e., the amount that each predictor contributes to the classification model; see top of 
Figure for scale). The curved line represents the cumulative ratio (i.e., the total amount each successive predictor contributes to the model; see bottom of 
Figure for scale). Leading predictors are depicted above the red line. Abbreviations: QoL, quality of life; hba1c, glycated hemoglobin; ADL, basic activities 
of daily living; IADL, instrumental activities of daily living; meds, medication; BP, blood pressure; BMI, body mass index
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for scale and Figure legend for interpretation)), (b) there 
is an evident elbow (or break in the distribution) in the 
cumulative ratio at this cut-off, (c) they collectively 
explained approximately half (46%) of the model (indexed 
by the cumulative ratio (i.e., blue curved line; see bot-
tom of Figure for scale and Figure legend for interpreta-
tion)), and (d) predictors below this cut-off contributed 
comparatively less to the classification model. The three 
leading predictors are QoL (memory; explained 21% of 
the cumulative ratio), lymphocyte count (explained 15%), 
and neutrophil count (explained 10%).

The Tree SHAP summary plot (Fig.  2) represents the 
direction, prevalence, and magnitude of effects associated 

with the top 30 predictors (response scales for each pre-
dictor are reported in Supplement Table  1). Regarding 
direction, for QoL (memory), red dots are located on the 
right side of the vertical line on the x axis, indicating that 
increasingly poor ratings elevate risk for SCI. Similarly, 
the observed patterns for lymphocytes and neutrophils 
show that abnormal counts increase risk for SCI. With 
respect to prevalence and effect magnitude, for QoL 
(memory), a large number of red dots are widely distrib-
uted along the far-right side of the vertical line on the x 
axis. This pattern indicates that, while the exact magni-
tude of effects varied across the considered cohorts, in 
general, poorer QoL (memory) is characterized by high 

Fig. 2 Tree SHAP summary plot depicting the top 30 predictors of subjective cognitive impairment. Predictors are plotted in descending order of model 
contribution. Each dot represents one study participant. These dots collectively represent the direction, prevalence, and magnitude of prediction effects 
(see Methods section for details). Leading predictors are denoted above the red line. Abbreviations: QoL, quality of life; hba1c, glycated hemoglobin; ADL, 
basic activities of daily living; IADL, instrumental activities of daily living; meds, medication; BP, blood pressure; BMI, body mass index
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magnitude effects. Similar findings were observed for 
abnormal lymphocyte count, with the exception that 
high magnitude effects were comparatively less prevalent 
in the overall study sample (as indicated by the smaller 
number of red dots on the far-right side of the vertical 
line). Regarding abnormal neutrophil count, effects of a 
more moderate magnitude were evidenced by a similar 
proportion of study participants.

RG2: discriminating MCI and CU cohorts: machine learning 
analyses and Tree SHAP interpretation
The RF classification model demonstrated excellent dis-
crimination of these cohorts (AUC = 0.88; F1 score = 0.84; 
see Table  2 for additional metrics). The Tree SHAP 

waterfall plot (Fig.  3) shows that the top five predictors 
explained 51% of the model. They are: QoL (memory; 
explained 25%), sex (explained 9%), lymphocyte count 
(explained 8%), self-rated eyesight (explained 5%), and 
QoL (leisure; explained 4%).

Regarding direction, the Tree SHAP summary plot 
(Fig. 4) indicates that increasingly poorer ratings of qual-
ity life QoL (memory, leisure), male sex, abnormal lym-
phocyte count, and higher perceptions of poor self-rated 
eyesight increase risk for MCI. With respect to preva-
lence and effect magnitude, for poorer QoL (memory), 
the large number of red dots along the far-right side of 
the vertical line indicates that, in general, high-magni-
tude effects are prevalent. By comparison, male sex is 

Fig. 3 Tree SHAP waterfall plot depicting the top 30 predictors of mild cognitive impairment. Predictors are plotted in descending order of model con-
tribution. The bars depict the individual composition ratio (i.e., the amount that each predictor contributes to the classification model; see top of Figure 
for scale). The curved line represents the cumulative ratio (i.e., the total amount each successive predictor contributes to the model; see bottom of Figure 
for scale). Leading predictors are depicted above the red line. Abbreviations: QoL, quality of life; hba1c, glycated hemoglobin; BP, blood pressure; meds, 
medication
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associated with prevalent small-magnitude effects (see 
densely distributed dots around the lower range). Results 
for abnormal lymphocyte count reveal that a relatively 
small proportion of the overall study sample evidenced 
moderate-to-high effect magnitudes. The pattern of find-
ings for poorer self-rated eyesight and QoL (leisure) are 
similar, whereby a large number of participants exhibited 
small magnitude effects.

RG3: discriminating AD and CU cohorts: machine learning 
analyses and Tree SHAP interpretation
Evaluation metrics indicated that the RF classification 
model was characterized by outstanding discrimina-
tion of the two cohorts (AUC = 0.98; F1 score = 0.84; 
see Table  2 for additional metrics). As depicted in the 
Tree SHAP waterfall plot (Fig.  5), the top 10 predic-
tors explained 70% of the model. These include: QoL 
(memory; explained 15%), olfaction (explained 11%), sex 
(explained 9%), ability to go shopping (explained 7%), 
ability to handle money (explained 7%), ability to take 
medication (explained 5%), visual contrast sensitivity 

Fig. 4 Tree SHAP summary plot depicting the top 30 predictors of mild cognitive impairment. Predictors are plotted in descending order of model 
contribution. Each dot represents one study participant. These dots collectively represent the direction, prevalence, and magnitude of prediction effects 
(see Methods section for details). Leading predictors are denoted above the red line. Abbreviations: QoL, quality of life; hba1c, glycated hemoglobin; BP, 
blood pressure; meds, medication
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(explained 5%), ability to get to places beyond walking 
distance (explained 4%), ability to prepare own meals 
(explained 4%), and ability to do housework (explained 
3%).

Regarding direction, the Tree SHAP summary plot 
(Fig.  6) reveals that increasingly poorer ratings of QoL 
(memory), reduced olfaction, male sex, higher levels of 
dependence in instrumental ADL (n indicators = 6), and 
increasingly poor visual contrast sensitivity increase risk 
for AD. With respect to prevalence and effect magnitude, 
poorer QoL (memory), increased dependence in shop-
ping, and increased dependence in handling money were 
characterized by moderate-to-high magnitude effects for 
a large number of study participants. Findings for poorer 
visual contrast sensitivity and increased dependence in 

taking medication, walking, and preparing meals suggest 
that, for a large number of study participants, effects are 
in the moderate range. The observed pattern for olfaction 
indicates that this predictor is associated with prevalent 
small-to-moderate effect magnitudes. Effect magnitudes 
for male sex and increased dependence in housework are 
also in this range; however, the prevalence of effect mag-
nitudes varies more widely.

Discussion
We investigate the question of whether constituent fac-
tors of frailty may vary in their importance in discrimi-
nating CU aging from three clinical conditions in the AD 
spectrum. Accordingly, we focused not on frailty per se 
as a general condition predictive of adverse outcomes 

Fig. 5 Tree SHAP waterfall plot depicting the top 30 predictors of Alzheimer’s disease. Predictors are plotted in descending order of model contribu-
tion. The bars depict the individual composition ratio (i.e., the amount that each predictor contributes to the classification model; see top of Figure for 
scale). The curved line represents the cumulative ratio (i.e., the total amount each successive predictor contributes to the model; see bottom of Figure for 
scale). Leading predictors are depicted above the red line. Abbreviations: QoL, quality of life; IADL, instrumental activities of daily living; hba1c, glycated 
hemoglobin; meds, medication
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but on a large pool of constituent factors as potentially 
dynamic and differentially predictive of specific clini-
cal conditions. The current collection of factors repre-
sents standard frailty-related clusters, such as disease 
syndromes, clinical symptoms, biomarkers, risk factors, 
medical signals, cognitive characteristics, and health 
beliefs or practices [13]. Accumulating evidence indi-
cates that progression along fitness-frailty continua pre-
dicts an increased risk for exacerbated cognitive decline 
[71, 72], as well as SCI [2, 3], MCI [4], and AD [5, 6]. We 
are unaware of prior research that investigated the num-
ber and profile of frailty factor signatures that optimize 

differential prediction of these prominent geriatric 
conditions.

Our approach applied a combination of ML classifier 
analysis and explainable artificial intelligence interpreta-
tions to a comprehensive database of 83 frailty-related 
indicators in order to (a) identify the leading factors that 
discriminate a benchmark CU cohort from SCI, MCI, 
and AD cohorts and (b) characterize the direction, preva-
lence, and magnitude of prediction effects. The three RF 
classifier models demonstrated excellent to outstanding 
discriminatory ability of these outcomes, with all AUCs 
in the 0.84–0.98 range. A comparison of the leading 

Fig. 6 Tree SHAP summary plot depicting the top 30 predictors of Alzheimer’s disease. Predictors are plotted in descending order of model contribution. 
Each dot represents one study participant. These dots collectively represent the direction, prevalence, and magnitude of prediction effects (see Methods 
section for details). Leading predictors are denoted above the red line. Abbreviations: QoL, quality of life; IADL, instrumental activities of daily living; hba1c, 
glycated hemoglobin; meds, medication
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predictors extracted across all models (n = 14) revealed 
both convergent (i.e., indicators predictive of two or three 
cohort memberships; n = 3) and cohort-specific (i.e., indi-
cators predictive of only one cohort membership; n = 11) 
factors. Regarding convergence, one indicator, quality 
of life (memory), discriminated the CU cohort from all 
three cohorts of the AD spectrum. In addition, the bio-
marker, lymphocyte count, discriminated the CU cohort 
from both the SCI and MCI cohorts. Sex (male) discrimi-
nated the CU cohort from both the MCI and AD cohorts. 
Regarding specificity, one indicator selectively predicted 
SCI (neutrophil count), two indicators predicted only 
MCI (self-reported eyesight, leisure-related QoL), and 
eight separate indicators predicted AD (olfaction, visual 
contrast sensitivity, shopping, handling money, taking 
medication, getting beyond walking distance, preparing 
meals, housework). Follow-up Tree SHAP interpreta-
tions indicated a generally expected and interpretable 
direction of effects, whereby higher levels of impairment 
on the associated indicator predicted an increased risk 
for clinical cohort membership. We discuss (a) the lead-
ing predictors for each clinical cohort and (b) factors that 
are commonly associated with aging, impairment, and 
dementia but did not predict any of the geriatric outcome 
conditions.

Leading predictors of the SCI cohort
The RF classification model was comprised of 64 multi-
modal indicators which collectively contributed to excel-
lent discriminatory ability of the neighboring CU and 
SCI cohorts (AUC = 0.89; F1 score = 0.72). As indicated 
by the Tree SHAP waterfall plot, the three predictors 
that most powerfully discriminated the SCI cohort col-
lectively explained nearly half of the model’s fit efficiency 
(46%). The Tree SHAP summary plot informed the fol-
lowing integrative interpretations.

First, poorer QoL (memory) increased risk for SCI. 
This study is the first to our knowledge to (a) simulta-
neously test multiple facets of QoL (memory, physical 
health, energy, mood, chores, leisure) in a competitive 
computational context and (b) extract subjective mem-
ory perceptions as a critical component that increases 
SCI risk. Several studies have evaluated the indepen-
dent association between SCI and QoL (operationalized 
as life satisfaction, well-being, physical health, or mental 
health), with results suggesting that poorer perceptions 
increase risk [73]. The emerging evidence on interven-
tions designed to improve QoL in samples with cognitive 
impairment or dementia is promising [74–76]. Future 
studies are therefore encouraged to evaluate whether 
such interventions may have direct effects on enhancing 
memory-related QoL.

Second, abnormal lymphocyte and neutrophil counts 
were leading predictors. The importance of these 

inflammatory biomarkers in discriminating MCI or AD 
from CU aging is a topic of increased research interest 
[77]. To our knowledge, no prior studies have evaluated 
whether these indicators are also associated with clinical 
risk for SCI. The present study fills this gap and advances 
previous ML biomarker research that identified abnormal 
lymphocyte and neutrophil counts as leading risk charac-
teristics for intensive care unit admission [78], infection 
[79], and mortality [78, 80]. Pharmacologic or lifestyle 
interventions targeting systemic inflammation may have 
positive downstream effects on preventing conversion to 
MCI or AD, as well as related adverse geriatric outcomes.

Leading predictors of the MCI cohort
The present model was comprised of 65 multi-modal 
indicators which produced excellent discrimination of 
the MCI and CU cohorts (AUC = 0.88; F1 score = 0.84). 
The Tree SHAP waterfall plot revealed that the five lead-
ing predictors explained half of the model’s fit efficiency 
(51%). The Tree SHAP summary plot proffered the fol-
lowing integrative interpretations.

First, poorer memory- and leisure-related QoL were 
leading predictors. Complementary findings have been 
reported in related research. For example, informant 
reports of memory concerns discriminate older adults 
with cognitive dysfunction from those who are CU [81]. 
Other research employing RF classifier technologies 
found that limited activity participation was a top pre-
dictor of conversion from CU aging to MCI [79]. Has-
sler and colleagues [30] reported that reduced activity 
participation and boredom reliably discriminated frail 
and non-frail older adults. Although these indicators do 
not explicitly measure QoL, the general pattern is con-
sistent with the notion that poorer subjective percep-
tions of memory- and lifestyle-related QoL [82] may be 
an important indicator of clinical risk for differential 
objective cognitive decline [10, 16], MCI [17], and AD 
[18]. These data provide indirect support to recent geri-
atric research encouraging clinical attention to subjective 
memory aging, lifestyle, and their potentially broad rami-
fications on everyday function [73, 74, 83].

Second, male sex increased risk for MCI cohort clas-
sifications. This finding buttresses previous work suggest-
ing that— because the prevalence and incidence of MCI 
is higher amongst males as compared to females [84–
86]— males may be more vulnerable to cognitive impair-
ment and dementia [87]. In line with this assertion, Na 
[79] applied ML analyses to an inventory of sociodemo-
graphic, health, interpersonal, quality of life, and well-
being indicators and determined that male sex was a key 
risk signature for MCI. This is a priority area of contin-
ued research attention. Advanced understanding of sex 
differences in risk for impairment and dementia may 
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reveal novel modifiable targets for precision intervention 
and treatment protocols [88, 89].

Third, abnormal lymphocyte count was a critical dis-
criminative factor. This finding, together with related 
(non-ML) research, indicates that lymphocytes are 
a promising MCI biomarker. Specifically, it has been 
reported that (a) older adults with MCI have higher lym-
phocytes counts relative to CU samples [77] and (b) these 
cohorts are reliably discriminated by this routine param-
eter [90, 91]. We clarify and extend this prior work by (a) 
applying ML technologies to multiple frailty-related risk 
modalities and (b) extracting lymphocytes as a critical 
predictor of subjective and objective cognitive impair-
ment. The mechanisms underlying these associations are 
not yet well understood [77, 91]. However, it is possible 
that sustaining abnormal levels of this pro-inflammatory 
cytokine may contribute to adverse changes in brain 
structure and function (e.g., interrupt adult neurogen-
esis) [92].

Fourth, poorer self-rated eyesight was a leading predic-
tor. Much of the available geriatric research evaluating 
vision-MCI associations has operationalized impairment 
using objective measures of distance visual acuity [93], 
with results suggesting that such factors increase MCI 
risk [94]. Because visual function is a complex process, 
it has been suggested that future investigations should 
evaluate a wider breadth of visual function indicators 
[95]. The current study addressed this research direc-
tion by testing the relative predictive importance of both 
objective (contrast sensitivity, macular degeneration, cat-
aracts) and subjective (self-reported eyesight) indicators 
in a computationally competitive context. Our results 
suggest that routine monitoring of self-reported eyesight 
may promote earlier identification of at-risk older adults 
in clinical care settings.

Leading predictors of the AD cohort
The current model was comprised of 75 multi-system 
indicators which collectively contributed to outstand-
ing discrimination of the two cohorts (AUC = 0.98; F1 
score = 0.84). Evidence depicted in the Tree SHAP water-
fall plot revealed that the 10 leading predictors explained 
70% of the model’s fit efficiency. As discussed above, the 
Tree SHAP summary plot indicated that poorer QoL 
(memory) was a critical factor discriminating the AD and 
CU cohorts. Integrative interpretations for the remaining 
predictors are provided below.

First, two sensory factors, reduced olfaction and poorer 
visual contrast sensitivity, predicted AD. Several stud-
ies have indicated a need for epidemiological research to 
evaluate the relative importance of olfaction, vision, and 
audition in predicting cognitive impairment and AD [20, 
96–98]. Our sensory-related findings showed that olfac-
tion was the leading risk domain, followed by vision. 

Notably, neither of the audition indicators (self-reported 
hearing, objective hearing impairment) were amongst 
the critical predictors of AD. The rank-ordering of these 
sensory risk factors replicates related (non-ML) geriatric 
research examining the relative importance of olfaction, 
vision, and audition in predicting accelerated cognitive 
decline and MCI [96, 97].

Second, convergent with MCI-related results, male 
sex was a leading predictor of AD. These data suggest 
that male sex may serve as a proxy for generalized mor-
bidity or deficit accumulation in aging [99]. Future rep-
lications could evaluate whether this pattern may also 
be attributed to the unbalanced sex distributions across 
the CU (18% male), MCI (51% male), and AD (70% male) 
cohorts.

Third, each of the instrumental ADL indicators tested 
in the present model emerged as salient discriminative 
factors. These included increased dependence in shop-
ping, handling money, taking medication, getting to 
places beyond walking distance, preparing meals, and 
performing housework. Complementary findings were 
reported in a recent study evaluating the independent 
association between instrumental ADL and AD-related 
neurodegeneration biomarkers [100], whereby increased 
difficulties in shopping, balancing a check book, and 
managing medications were correlated with smaller hip-
pocampal volumes and reduced brain network connec-
tions. Previous ML work evaluated the relative predictive 
importance of instrumental ADL indicators and related 
modalities in discriminating frail and non-frail older 
adults. Leading predictors included reduced kitchen 
activity levels and kitchen use duration [101], as well as 
increased difficulties in shopping, cooking, perform-
ing housework, and using public transportation or the 
telephone [30]. Instrumental ADL summary scores have 
also been shown to (a) discriminate AD and CU cohorts 
[102, 103] and (b) predict risk of converting from SCI 
[104] or MCI [105] to AD. The latter findings suggest 
that deficits in this domain may appear early in the neu-
ropathological cascade of AD [106, 107]. However, we 
did not detect such a pattern in our results. It is possible 
that older adults with SCI or MCI may be more likely to 
demonstrate reduced instrumental ADL capabilities at 
more advanced ages or at higher levels of perceived or 
objective impairment. Alternatively, participants in each 
of the respective cohorts may represent a relatively high 
functioning subset of older adults due to the demanding 
nature of the COMPASS-ND study protocol [36, 41].

What about the trailing predictors (falling below the break 
in the Tree SHAP waterfall plots)?
Our discussion concentrates on factors identified as 
among the leading predictors of the three AD-related 
cohorts. However, all of the indicators included in the 
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prediction models have been previously identified as 
potential contributors to geriatric frailty in aging and 
dementia. In the present computationally competitive 
RF classification models, many of these factors did not 
appear as relatively important predictors for any clinical 
cohort. As depicted in the Tree SHAP waterfall plots: (a) 
the top 30 predictors collectively explained approximately 
90% of each model’s fit efficiency (range = 86–91%); (b) 
this variance was largely accounted for by the leading 
predictors (i.e., those above the break in the cumulative 
ratio; range = 46–70%); and (c) the remaining predictors 
explained a comparatively smaller proportion the model’s 
fit efficiency (range = 20–40%). In Supplement Table 2, we 
(a) present a complete list of indicators that were tested 
in the three classifier models and (b) denote indicators 
that were not robust predictors of any cohort in the AD 
spectrum. As can be seen, none of the indicators from 
the following modalities were extracted in the pres-
ent computational models: basic ADL, physical activity, 
mobility, anthropometric measures, sleep, functional 
indicators, exhaustion, self-reported health, cardiorespi-
ratory health, clinical symptoms and diseases, emotional 
wellbeing, and oral health or nutritional factors. Each 
of these domains have been characterized (to varying 
degrees) as important risk elevating characteristics for 
cognitive impairment and dementia [98, 108]. However, 
our results suggest that, when simultaneously analyzed in 
a powerful ML context, these facets of frailty are compar-
atively less important than QoL, fluid biomarkers, sen-
sory function, sex, and instrumental ADL.

Strengths and limitations
We note the following study strengths. First, we applied 
a combination of binary RF classifier analysis and Tree 
SHAP interpretations to a broad swath of frailty factors. 
The integration of ML and explainable artificial intelli-
gence technologies represents a promising complement 
to traditional research methods, such as candidate factor 
or composite index approaches. Supplemental advan-
tages include the opportunity for (a) extracting critical 
predictors of SCI, MCI, and AD from a large cluster of 
frailty-related morbidity, deficit, and risk indicators; (b) 
identifying clinically relevant and potentially unexpected 
or unique signatures of frailty and dementia risk; and (c) 
elucidating the direction, prevalence, and magnitude of 
prediction effects while at the same time controlling for 
overfitting [25, 58, 59]. Future studies are encouraged to 
examine concordant research questions using comple-
mentary ML algorithms and approaches (e.g., discrimi-
nation of SCI, MCI, and AD cohorts using multi-class RF 
analysis). Second, each of the three RF models were char-
acterized by a low proportion of missing data (1–2%). 
We estimated these values using a sophisticated [66] 
and accurate [45] imputation approach, as applied in the 

sklearn pipeline [51]. Relative to listwise or pairwise dele-
tion, multiple imputation approaches are associated with 
reduced bias and increased generalizability of the study 
findings [47]. Third, cross-sectional data were drawn 
from the COMPASS-ND database, which represents a 
comprehensive Canadian database of geriatric neurode-
generative disorders [36, 37]. Participants were deeply 
phenotyped cohorts who collectively represented the full 
AD spectrum. Inclusion of CU older adults allowed us 
to detect potentially modifiable risk characteristics that 
could be targeted prior to the onset of clinically detect-
able frailty, cognitive impairment, or dementia.

We note the following study limitations. First, partici-
pants in our study were primarily non-Hispanic White 
(92%), compromising generalizability to older adults of 
diverse racial, ethnic, or indigenous backgrounds. Sec-
ond, the present sample was community dwelling, per-
haps suggesting a generally more functional lifestyle than 
would be expected for persons living with the advanced 
clinical conditions in formal care settings. Additional 
research reflecting diverse lifestyle and social living set-
tings is encouraged. Third, because the COMPASS-ND 
dataset is unbalanced by sex, we were unable to examine 
disaggregated models. However, testing for sex as a fac-
tor revealed that in two (of the three) models, sex was 
a leading predictor. Further research on sex and gender 
contributions is recommended. Fourth, slightly different 
subsets of the original 83 identified frailty-related indica-
tors were evaluated in the three RF classification models. 
As noted in the Methods section, some indicators were 
differentially available across the cohorts due to (a) miss-
ing data that exceeded the criterion cut-off of 50% [34, 
45–47] or (b) a low proportion of participants (< 10%) 
characterized by the associated deficit [35, 48]. See Sup-
plement Table  2 for a complete description. Follow-up 
studies could explore whether complementary prediction 
patterns are detected when such indicators are uniformly 
available.

Conclusions
The current study tested a wide and representative set of 
up to 75 frailty-related factors (overall pool n = 83) fre-
quently used in geriatric research. We used three com-
putationally competitive ML models to identify salient 
predictors that discriminate a cohort of CU older adults 
from those with SCI, MCI, or AD. Examination of the 
leading predictors extracted across the three classifier 
models suggested both convergence and specificity of 
deficit-related prediction patterns. Regarding conver-
gence: (a) QoL (memory) predicted each phase of the AD 
spectrum, such that older adults characterized by per-
ceived or objective impairment found that poor memory 
affected their quality of life; (b) abnormal lymphocyte 
count predicted both SCI and MCI; and (c) male sex 
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predicted both MCI and AD. A morbidity intensity trend 
was indicated by an increasing number and diversity of 
predictors corresponding to clinical severity. Specifically: 
(a) SCI was selectively predicted by abnormal neutrophil 
count; (b) MCI was selectively predicted by poorer self-
reported eyesight and leisure-related QoL; and (c) AD 
was selectively predicted by reduced olfaction, poorer 
visual contrast sensitivity, and increased dependence in 
instrumental ADL (shopping, handling money, taking 
medication, getting beyond walking distance, prepar-
ing meals, housework). These results advance precision 
understanding of morbidity and deficit accumulation 
and its impact across the AD spectrum. Importantly, the 
majority of these factors are potentially modifiable and 
may therefore include potential targets for early inter-
ventions designed to offset or delay the incidence of cog-
nitive impairment or dementia [109]. Collectively, this 
knowledge may better enable precision health solutions 
to identify and target signatures of risk as specific phases 
of the AD spectrum. Future longitudinal extensions in 
the COMPASS-ND database and related large-scale geri-
atric studies are encouraged.
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