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Abstract 

Background There are a lot of tools to use for fall assessment, but there is not yet one that predicts the risk of falls 
in the elderly. This study aims to evaluate the use of the G‑STRIDE prototype in the analysis of fall risk, defining the cut‑
off points to predict the risk of falling and developing a predictive model that allows discriminating between subjects 
with and without fall risks and those at risk of future falls.

Methods An observational, multicenter case–control study was conducted with older people coming from two dif‑
ferent public hospitals and three different nursing homes. We gathered clinical variables ( Short Physical Performance 
Battery (SPPB), Standardized Frailty Criteria, Speed 4 m walk, Falls Efficacy Scale‑International (FES‑I), Time‑Up Go Test, 
and Global Deterioration Scale (GDS)) and measured gait kinematics using an inertial measure unit (IMU). We per‑
formed a logistic regression model using a training set of observations (70% of the participants) to predict the prob‑
ability of falls.

Results A total of 163 participants were included, 86 people with gait and balance disorders or falls and 77 with‑
out falls; 67,8% were females, with a mean age of 82,63 ± 6,01 years. G‑STRIDE made it possible to measure gait 
parameters under normal living conditions. There are 46 cut‑off values of conventional clinical parameters and those 
estimated with the G‑STRIDE solution. A logistic regression mixed model, with four conventional and 2 kinematic 
variables allows us to identify people at risk of falls showing good predictive value with AUC of 77,6% (sensitivity 0,773 
y specificity 0,780). In addition, we could predict the fallers in the test group (30% observations not in the model) 
with similar performance to conventional methods.

Conclusions The G‑STRIDE IMU device allows to predict the risk of falls using a mixed model with an accu‑
racy of 0,776 with similar performance to conventional model. This approach allows better precision, low cost 
and less infrastructures for an early intervention and prevention of future falls.
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Introduction
Population aging is the result of successful health and 
social policies, with those over 65 being the group that 
has had the most growth in recent decades. But, as the 
aging population increases, more individuals will be 
at risk of developing chronic diseases, disability, and 
dependence.

Falls are one of the most important geriatric syndromes 
and one of the main causes of disability; they occur at all 
ages but specially over 65 years when frailty, sarcopenia 
and other multiple causes are more prevalent.

According to the World Health Organisation (WHO), 
684,000 people die every year due to falls the second 
cause of accidental death in the world, in addition to con-
ditioning important functional consequences. The three 
highest risk groups are children, workers, and the aged 
population. However, the elderly are the group with the 
highest risk of complications so recognizes falls as a pub-
lic health problem of the first magnitude [1].

Significant complications in the elderly accompany 
falls; psychological impact, which can condition new falls 
and secondary functional impairment, physical conse-
quences such as soft tissue injuries, rarhabdomyolysisr 
head trauma that occurs in 10% of cases, 5% suffer frac-
tures and in 1–2% have a hip fracture that is the one with 
the greatest functional impact, mortality and hospital 
costs. Secondarily these complications condition institu-
tionalization, functional and quality of life loss and direct 
and indirect health costs [2].

Falls typically arise from the complex interplay of vari-
ous factors rather than a singular cause. Intrinsic factors, 
such as age, sex, and chronic conditions like diabetes, 
dementia, or Parkinson’s disease, in combination with 
the effects of medication and environmental hazards, can 
disrupt balance and impact an older individual’s postural 
responses, thereby heightening the risk of falls. This risk 
is particularly pronounced in specific circumstances, 
such as during transfers or while navigating challenging 
terrain [3].

In young individuals, falls result from external situa-
tions like sports or working activities. Still, in the older 
adult, a minimal external factor can lead to falling by 
combining multiple intrinsic and extrinsic factors. The 
multifactorial falls risk assessment allows identifying all 
these factors in order to develop individualised, tailored 
fall prevention plans. The identification of the subjects 
at risk of suffering from falls is crucial since it allows to 
act in specially susceptible populations and therefore 
reduce the incidence and prevalence of falls [4]. As well 
as improving their quality of life and their participation 
in the community.

However, to date, screening tools to detect risk sub-
jects have shown variable results [5]. and some of them 
with application exclusively in certain settings (commu-
nity, acute units, surgical, rehabilitation or residences) 
[6–8].

Finally, there are few studies in which new diagnos-
tic tools such as posturography mechanical sensors or 
inertial sensors are incorporated. However, their use has 
emerged as an approach of great interest since they allow 
greater precision and richness of data, in some cases with 
lightweight sensors of easy use, portable and with low 
cost [9–12].

Recently, the results of a study that evaluates the appli-
cability of the G-STRIDE electronic device based on 
inertial sensors, in evaluating subjects with and without 
falls have been published. The results showed that the 
device detects spatio-temporal gait parameters accu-
rately, and were capable of discriminate between subjects 
with and without falls. Furthermore, significant correla-
tions between the gait parameters and the functional 
tests commonly used were found [13]. Since the precision 
and discriminative capacity of G-STRIDE are promis-
ing, a relevant question remained to be answered: what 
is the predictive performance of G-STRIDE to predict fall 
probability.

Therefore the objective of this study is to evaluate the 
use of the G-STRIDE prototype for predicting fall risk, 
defining the cut-off points that allow predicting fall risk, 
and to develop a predictive model that allows discrimi-
nating between subjects with and without falls while 
identifying those at risk of future falls.

Methodology
This is an observational, multicenter case–control 
study in older adults  with and without fall risk. The 
Research  Ethics Committee approved the sstudy of the 
Hospital Universitario de la Paz (Registration Number: 
PI-4486).

The estimated effect size for a t-test for differences 
between two independent means based on a statistical 
power of 0.8 and an alpha error of 0.05 with an effect size 
of 0.8, a sample size of 84 subjects was estimated.

Participants were included from the out-patient clinic 
in two general public hospitals and three nursing homes 
from September 2021 to March 2022.

We adopted the World Health Organisation defini-
tion for falls [1]: “a fall is an event that results in a person 
coming to rest inadvertently on the ground or floor or 
other lower level”. According to this definition, we define 
the “Fallers Group” as those adults over 70 years who had 
one of the next circumstances:
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• One fall with consequences in the last year (requiring 
medical attention)

• Two or more falls in the same period
• Gait and balance disorder
• Fear of falling or post-fall syndrome.

These criteria were based on those proposed by the 
American Geriatrics Society (AGS) and the British Geri-
atrics Society (BGS) to identify those patients with higher 
risk of falls who should be offered a multifactorial assess-
ment [14].

The participants without falls were volunteers over 
70 years that gave informed consent.

Exclusion criteria for the study were terminal illness 
with a life expectancy of fewer than six months.

Clinical assessment
Clinical assessment was carried out in a single visit..The 
following datawere registered: sociodemographic char-
acteristics, level of Physical Activity, Weight, Height, 
Body mass index (BMI), Deterioration Scale from Reis-
berg (GDS) [15], frailty assessment using the Standard-
ised Frailty Criteria (FRG) [16], walking speed (Speed 
4 m walk) [17], Short Physical Performance Battery Scale 
(SPPB) [18], Time up and go test (TUG) [19], andf fear of 
falling syndrome assessed using the Short Falls Efficacy 
Scale—International (Short FESI) [20].

Gait analysis. The G‑STRIDE system
Gait analysis was done using G-STRIDE system after 
the clinical assessment in the same visit. For the walking 
test, the device was placed on the top of the foot (Fig. 1) 

and after switching up the device, the participant was 
invited to walk freely for approximately 30 min. Partici-
pants from outpatient clinic walked around the hospital 
and those institutionalized walked around the nursing 
home. After this time, the data recorded was stored and 
the device was switched off.

The G-STRIDE device was presented in prevous 
paper [13]. It is comprised by an inertial sensor (IMU) 
and a processing electronics that allows obtaining kin-
ematic-related variables (described below), store them 
in a SD card, and connect with a user interface. During 
the tests, no subject had any complications or problems 
derived from the use of the device.

The G-STRIDE is a lightweight device with dimen-
sions 78 × 45x38 mm. It is comprised by an IMU and 
Arduino board that samples the data from the IMU dur-
ing walking. It also features a Secure-Digital (SD) mem-
ory card to store the data from each test conducted, as 
well as Wi-Fi capacity to measure and visualize in real 
time walking data and system status. Besides, a Rasp-
berry card is implemented to allow for off-line sensor 
data analysis stored in the SD card, and the execution 
of the inertial navigation zero-velocity-update (INS-
ZUPT) algorithms to obtain the trajectory and orien-
tation of the foot, and derive an all the walking-related 
variables defined by the clinicians to assess walking. 
These variables are then stored in a database hosted 
in the Raspberry itself and are post-processed. The 
G-STRIDE device was attached to the instep by an elas-
tic band as shown in Fig. 1.

Estimated gait parameters
The variables estimated by the G-STRIDE using the IMU 
on the foot of each participant are:

• “Total distance(m)”: The total distance traveled dur-
ing long the free walk is measured in meters.

• “Total time(s)”: The total time taken in the long walk 
measured in seconds.

• “Total steps”: The total number of steps in the free 
walk.

• “Gait Cycle Time-GCT”: The mean Gait Cycle Time 
(GCT) measured in seconds.  It is the time elapsed 
during a stride.

• “Velocity(m/s)”: The mean walking speed computed 
over the total detected steps measured in meters per 
second.

• “Cadence(steps/min)”: The mean cadence measured 
number of steps per minute.

• The time of each cycle in percentage (%) with respect 
to GCT. The phases and events are shown in Fig. 2:Fig.1 G‑Stride IMU. Left: several units for tests. Right: IMU attached 

to a participant’s foot
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– “Swing time(% GCT)”: Swing time (from toe-off to 
heel strike) as percentage of GCT.

– “Stance-Loading time(% GCT)”: From heel-strike 
to start of foot-flat time as percentage of GCT.

– “Stance-FootFlat time(% GCT)”: Foot-flat (from 
start to end) time as percentage of GCT, it occurs 
between toe-strike and heel-off.

– “Stance-Pushing time(% GCT)”: From heel-off to 
toe-off time as percentage of GCT.

 

• Pitch angles at start and end of stance/swing, they are 
the angles that the foot forms with the ground during 
the heel-strike and toe-off events (see Fig. 3).

– “Heel strike angle(deg)”: The maximum pitch angle 
at heel strike measured in degrees.

– “Toe-off angle(deg)”: The maximum pitch angle at 
toe-off is measured in degrees.

 

• “Clearance(m)”: The clearance or maximum height 
of the foot with respect to ground during the swing 
phase (see Fig.  3).  It is obtained as the maximum 
value observed in Z.

• “Stride Length-SL(m)”: The Stride length (distance 
from one stance position to the next stance of the 
same foot) is measured in meters.  It is the distance 
travelled during a stride (see Fig. 4).

• “StepSpeed(m/s)”: The forward speed of foot only 
during the swing phase is measured in meters per 
second.  It is calculated as the coefficient between 
Stride Length and Gait Cycle Time.

• “2D Path(m)”: The path length of the foot in the hori-
zontal plane during a step (always equal or larger 
than SL), see Fig.  5.  It is calculated as the position 
increment in XY.

• “3D Path(m)”: The path length of the foot in 3D space 
during a step (always equal to or larger than SL and 

Fig. 2 Diagram of gait phases (Stance, Swing, Load, Foot‑Flat and Push) and events (Heel‑Strike, Toe‑Strike, Heel‑Off and Toe‑Off )

Fig. 3 Diagram of foot angle during toe‑off and heel‑strike events, and foot clearance during swing phase
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2D path), see Fig.  5.  It calculated as the position 
increment in XYZ.

Additionally to the above mentioned parameters, 
which are computed as the mean on a step-by-step 
basics, we also estimate the standard deviation (STD) 
or variability among steps. These STD variables are also 
important to register the regularity or repetitiveness of 
walk, with higher STD indicating that the gait pattern 
is not too stable.  The parameter estimation has been 
validated in [21], showing a stride-length mean relative 
error of below 4%.

Statistical analysis
The sample complied with normality by Kolmogorov–
Smirnov, so parametric tests were performed. We deter-
mined the demographic and anthropometric parameters 
as means and standard deviations for continuous vari-
ables (groups compared with the t student test) or per-
centages for the discrete variable (groups compared with 
Chi square test).

Statistical analysis was carried out with SPSS v.27 
(Copyright© 2013 IBM SPSS Corp.) and the R language 
for statistical computing (R Foundation for Statistical 
Computing, Vienna, Austria) [22].

Fig. 4 Diagram of gait spatial parameters: step and stride length

Fig. 5 Diagram of 2D and 3D path length trajectory during a stride
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Logistic regression method for risk‑of‑fall cut‑off 
and classification
As the FALLS variable is binary, we used a logistic regres-
sion learning in order to model and explain the variables 
that cause a fall, and to be able to predict future falls by 
classifying observations from new participants. This 
approach is used for cut-off point finding and also for 
muti-variable regression.

We used as training a cross-validation approach with 
50 randomly generated subsets of all observations in our 
database. Each training subset contained 70% of the par-
ticipants in the database. The remaining random subsets 
with 30% of the observations were used for testing the 50 
generated models.

The confusion matrices and derived statistics were the 
average of all prediction results for all 50 fitted mod-
els, including the worst, the best and all other models 
in between (i.e. not using just the best-model results). 
The total number of testing observations were 2445 
(50 × 0.3 × 163). This systematic methodology generates 
stable statistics (not changing with new iterations), so the 
accuracy values given in this paper are quite reliable of 
the expected performance.

The logistic regression models can incorporate demo-
graphic variables (such as age, gender, etc.) to address any 
potential imbalances in the sample distribution, particu-
larly for variables like age or height, which directly influ-
ence walking speed.

Logistic regression is a valuable tool for categorical 
prediction, providing probability scores for observa-
tions. However, it has some limitations. When multiple 
co-linear variables are present, the stability of coeffi-
cients during convergence to a fit may be compromised. 
Logistic regression also struggles when dealing with a 
large feature space or a substantial number of categorical 
variables. Nonetheless, the regression models developed 
in this study exhibit reasonable performance with our 
dataset. It should be noted, however, that the addition of 
new variables to the models can lead to a decrease in per-
formance. Therefore, there is a trade-off between model 
performance and the number of variables employed.

Results
Table 1 shows basal characteristics of the study with 163 
participants (86 of fallers group).

Mean age was 82.6 ± 6.2 years, being older the group of 
fallers and 118 (72%) were women.

Cut‑off points and faller detection performance
Cut-off points are able to individually separate non fall-
ers from group of fallers. A total of 46 cut-off values are 
presented in Tables  2 and  3. They were computed indi-
vidually with a specific logistic regression for each of the 
variables. This list contains classical clinical parameters 
(Table 2) and those estimated with the footmounted IMU 
(G-STRIDE) (Table 3).

Table 1 Descriptive basal parameters

** p < 0.01
*** p < 0.001; t Student;  X2 Chi Square

Overall (n = 163) Fallers Group (n = 86) No fallers (n = 77) t o  X2

Age (min–max/ M ± DS) 70 – 98 / 82,63 ± 6,01 71 – 96 / 84,17 ± 5,48 70–98/80,9 ± 6,5 ‑3,44**

Sex 32,69***

 Male (Fr (%)) 45 (25,9) 19 (22,1) 26 (33,8)

 Female (Fr (%)) 118 (67,8) 67 (77,9) 51 (66,2)

Weight (min–max/ M ± DS) 33,1 – 105 / 64,28 ± 13,11 33,1 – 94,4 / 63,08 ± 13,44 37,6–105/65,62 ± 12,68 1,23

Height (min–max/ M ± DS) 1,32 – 1,84 /1,56 ± ,10 1,32 – 1,74 / 1,52 ± ,08 1,42–1,84/1,61 ± ,09 6,49***

IMC (min–max/ M ± DS) ,002 – 42,52 / 25,65 ± 6,10 ,002 – 42,52 / 26,21 ± 7,45 16,46–35,49/25,02 ± 4,05 ‑1,27

GDS (min–max/ M ± DS) 1 – 7 /2,05 ± 1,6 1–7/ 2,35 ± 1,7 1–7/1,71 ± 1,43 ‑2,58 **

Living_Site 19,93***

 Residence (Fr (%)) 53 (30,5) 31 (36) 22 (28,6)

 Home (Fr (%)) 110 (63,2) 55 (64) 55 (71,4)

Terrain 13,92***

 Mix (Fr (%)) 53 (30,5) 9 (10,5) 44 (57,1)

 Flat (Fr (%)) 99 (56,9) 71 (82,6) 28 (36,4)

Test_Site 2,810

 Hospital (Fr (%)) 64 (36,8) 52 (60,5) 12 (15,6)

 Residence (Fr (%)) 52 (29,9) 30 (34,9) 22 (28,6)

 Home (Fr (%)) 47 (27) 4 (4,7) 43 (55,8)
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Table 2 Cut‑off points for classical clinical parameters

CutOff = It is a cutoff or limit value used in the analysis; intcpt = Refers to an intercept or constant in a regression model; cofhim: Represents a coefficient associated 
with a specific variable; with (Z): Indicates the relationship or association of a variable with respect to other variables or the outcome; p: It is the p-value, which is used 
to evaluate the statistical significance of the coefficients, p < 0.05; itself: Represents the value or outcome of a variable itself

CutOff intcpt cofhim with p itself

Time_4m_inalk 5.19 ‑2.53 0.48 4.66 0.0001 ***

Speed_4m_walk 0.84 3.68 ‑4.33 ‑5.76 0.0001 ***

SPPB_equilibrium 3.30 2.98 ‑0.90 ‑4.68 0.0001 ***

SPPB_4mSpeed_score 3.21 3.10 ‑0.96 ‑5.20 0.0001 ***

SPPB_ChairStand_score 2.79 1.14 ‑0.41 ‑3.19 0.001 **

SPPB_Total 9.03 3.41 ‑0.37 ‑5.13 0.0001 ***

TUG 13.62 ‑2.71 0.19 5.02 0.0001 ***

FES1 9.45 ‑2.72 0.28 4.54 0.0001 ***

Table 3 Cut‑off points for IMU (G‑STRIDE) parameters

CutOff = It is a cutoff or limit value used in the analysis; intcpt = Refers to an intercept or constant in a regression model; cofhim: Represents a coefficient associated 
with a specific variable; with (Z): Indicates the relationship or association of a variable with respect to other variables or the outcome; p: It is the p-value, which is used 
to evaluate the statistical significance of the coefficients, p < 0.05; itself: Represents the value or outcome of a variable itself

CutOff intcpt cofhim with p itself

Total distance (m) 1028.713 2.214 ‑0.002 ‑5.40 0.0001 ***

Total time (s) 1351.843 2.592 ‑0.002 ‑4.39 0.0001 ***

Total steps 1135.392 2.791 ‑0.002 ‑5.01 0.0001 ***

Gait Cycle Time—GCT (s) 1.205 ‑5.585 4.633 4.32 0.0001 ***

GCT STD 0.094 ‑2.128 22.637 4.75 0.0001 ***

stance—Pushing time (% GCT) 18.244 4.522 ‑0.248 ‑3.68 0.0001 ***

stance—Pushing time STD 1.630 ‑0.752 0.462 1.69 0.09

Swing (% GCT) 28.914 10.606 ‑0.367 ‑5.14 0.0001 ***

Swing STD 2.257 ‑2.576 1.141 4.32 0.0001 ***

Stance—Loading time (% GCT) 11.371 3.594 ‑0.316 ‑3.96 0.0001 ***

Stance—Loading time STD 1.337 ‑0.431 0.322 0.88 0.376

Stance—FootFlat time (% GCT) 41.860 ‑6.614 0.158 5.11 0.0001 ***

Stance—FootFlat time STD 3.876 ‑1.862 0.480 3.71 0.001 ***

Toe off angle (deg) ‑53.855 4.308 0.080 5.18 0.0001 ***

Toe off angle STD ‑5.101 0.053 0.010 0.09 0.926

Heel strike angle (deg) 15.595 2.344 ‑0.150 ‑4.94 0.0001 ***

Heel strike angle STD 2.720 2.152 ‑0.791 ‑3.68 0.001 ***

Cadence (steps/min) 50.492 5.941 ‑0.118 ‑4.34 0.0001 ***

Cadence STD 3.846 ‑1.637 0.426 3.15 0.001 **

StepSpeed (m/s) 0.855 3.742 ‑4.376 ‑5.75 0.0001 ***

StepSpeed STD 0.110 1.657 ‑15.064 ‑2.54 0.01 *

StrideLength—SL (m) 0.940 4.332 ‑4.611 ‑5.55 0.0001 ***

StrideLength STD 0.120 1.151 ‑9.561 ‑1.93 0.05

3D Path (m) 1.016 4.586 ‑4.515 ‑5.73 0.0001 ***

3D Path STD 0.034 ‑0.055 1.614 0.27 0.789

2D Path (m) 0.957 4.390 ‑4.586 ‑5.57 0.0001 ***

2D Path STD 0.123 1.079 ‑8.790 ‑1.85 0.064

Clearance (m) 0.180 1.010 ‑5.609 ‑3.61 0.001 ***

Clearance STD 0.050 1.066 ‑21.450 ‑3.83 0.0001 ***

Velocity (m/s) 0.784 3.650 ‑4.658 ‑5.64 0.0001 ***
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The intercept and coefficients are also included in the 
table to let us know the direction of the effect. Negative 
coefficients mean that larger values in the variable causes 
lower probability of fall. On the contrary if coefficient is 
positive when a parameter increases so does the prob-
ability of fall.

As can be seen, most variables are significant.
The accuracy of fall risk estimation using just one cut-

off is good but limited (68.5% for FES1, 68.9% for SPPB 
Total, 69.51% for SPPB equilibrium, 66.3% for FRG Total, 
71.18% for ‘StrideLength-SL(m)‘or 72.4% for ‘StepSpeed 
(m/s)‘. Note the promising classification power (larger 
than 70%) of the last two G-STRIDE (IMU) variables. It 
is expected at least a slightly better performance when 
using several variables at the same time. This will be seen 
in next subsection using a multi-variable logistic regres-
sion approach.

Next, we present the different logistic regression mod-
els for three types of models: a) Using only conventional 
vavriables (clinical scales and variables), 2) G-STRIDE 
kinematic data alone, and 3) Mix model integrating the 
clinical scales and the kinematic variables obtained from 
the G-STRIDE.

Logistic regression using clinical variables
Using the conventional variables, we fitted over the 
train data the logistic regression model represented 
in Table 4, where the first column represents the coef-
ficients of the model. Most variables are as individu-
als discriminant (seen in the cut-off Table 2), but when 
combined with others appear less discriminant (e.g. 
SPPB total and”Speed 4  m walk” with p value greater 
than 0.9). For this combination of variables, the accu-
racy is 78.4% (Table  7), which is better than using any 
single cut-off classification (all lower than 70% as seen 
in last section).

Logistic regression using G‑STRIDE kinematic variables
A selection of G-STRIDE kinematic variables was done 
using an iteractive process to exclude individual param-
eters that did not impacted in the performance of the 

model because of its correlation with other parameters. 
At the end we obtain a selection of parameters (includ-
ing both means and standard  deviation STD), those 
fitted in the logistic regression model represented in 
Table  5, where the first column represents the coef-
ficients of the model. The most relevant variables are 
GCT STD, Stance-Foot Flat-time STD. The other vari-
able appears to be less significant, but it is a dilution 
effect due to colinearity. The accuracy for this model is 
68.0% (Table  7), which is not as good as expected. 
Remember that in the cut-off analysis a single parameter 
performed like this: 71.18% for ‘StrideLength-SL(m)‘ or 
72.4% for ‘StepSpeed (m/s)‘ (Table 5). We estimate that 
could be possible to improve performance by reducing 
the number of terms, specially selecting the parameters 
that are easier to estimate (those with lower estimation 
error, below 5%) or by improving the estimation algo-
rithms to make estimation more reliable in the most 
challenging parameters.

Table 4 Logistic regression model using conventional variables

a OR Odds Ratio, CI Confidence Interval

Characteristic log(OR)a 95%  CIa p‑value

FES1 0.14 ‑0.02, 0.32 0.089
FRG_Total 1.8 0.63, 3.2  < 0.001
TUG 0.04 ‑0.07, 0.17 0.5

GDS 0.00 ‑0.31, 0.31  > 0.9

Speed_4m_walk ‑1.2 ‑4.3, 1.8 0.4

SPPB_Total ‑0.04 ‑0.35, 0.27 0.8

Age ‑0.02 ‑0.11, 0.08 0.8

Table 5 Logistic regression model using IMU (G‑STRIDE) 
variables

a OR Odds Ratio, CI Confidence Interval

Characteristic log(OR)a 95%  CIa p‑value

Total distance (m) 0.00 0.00, 0.00 0.4

GCT ST 29 2.5, 59 0.032
StancePushing time (% GCT) 0.06 ‑0.40, 1.1 0.8

Swing (% GCT) ‑0.11 ‑0.68, 1.0 0.8

Stance—Loading time (% GCT) 0.27 ‑0.36, 1.4 0.4

Stance—FootFlat time (% GCT) ‑0.06 ‑0.52, 1.0 0.9

Stance—FootFlat time STD ‑0.79 ‑1.5, ‑0.15 0.015
Toe off angle (deg) 0.04 ‑0.05, 0.13 0.4

Heel strike angle (deg) ‑0.05 ‑0.24, 0.13 0.6

Heel strike angle STD ‑0.56 ‑1.6, 0.38 0.2

Cadence (steps/min) 0.04 ‑0.22, 0.32 0.7

StepSpeed (m/s) ‑2.8 ‑19, 12 0.7

StrideLength—SL (m) 0.52 ‑13, 15  > 0.9

Clearance (m) 4.1 ‑12, 23 0.6

Clearance STD ‑13 ‑80, 46 0.7

Table 6 Logistic regression model using mix variables

a OR Odds Ratio, CI Confidence Interval

Characteristic log(OR)a 95%  CIa p‑value

FES1 0.24 0.08, 0.44 0.002
SPPB_equilibrium ‑0.38 ‑1.0, 0.17 0.2

FRG_strength ‑0.03 ‑0.12, 0.05 0.5

FRG_physical_activity 1.3 0.13, 2.6 0.029
StepSpeed (m/s) ‑2.7 ‑5.4, ‑0.30 0.027
Stance—FootFlat time STD ‑0.17 ‑0.60, 0.25 0.4
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Logistic regression using mixed clinical & kinematic 
variables
Finally, using a logistic regression mixed model, with 
4 conventional & 2 G-STRIDE kinematic variables, we 
obtained the coefficients represented in Table  6. The 
most  relevant variables are FES1, FRG Physical activity 
and StepSpeed. The accuracy is 77.6% (Table 7).

Comparing the three models: coventional, G‑STRIDE IMU 
and mix regression models
The capability for classifying or predicting the probabil-
ity of fall, is shown in the form of histograms for an easy 
interpretation, in Fig. 2. The ideal 100% perfect classifica-
tion will correspond to a full red histogram to the right 
of ther vertical cut-off line (100% true positives) and a 
full green histogram to the left of the vertical cut-off line 
(100% true negatives). However is evident the presence of 
some histogram tails that cross the cut-off line and repre-
sent the false positive or false negatives Fig. 6.

The confusion matrix derived for each of the 3 mod-
els (Conv, IMU and Mix) are presented in Table 7. The 
Mix model which includes a few parameters (6) is able 
to perform as well as a complete set of conventional 
study. It is also important to highlight the accuracy of 
other individual tests such as SPPB and the 4  m walk 
test (last two columns in Table  7) which are good, 
although show a lower performance when compared 
to the conventional and the mixed model that includes 
other complementary parameters.

Discussion
The objective of this study was to compare the predic-
tive performance of clinical parameters, obtained by 
conventional clinical evaluation and kinematic variables 
obtained by an electronic device based on inertial sensors 
(G-STRIDE) to identify fall risk in elderly subjects, defin-
ing cut-off points in the analyzed variables and regression 
models that allow predicting future fallers.

The results of the study show the cut-off points for risk 
of falls in both conventional clinical variables and the 

kinematic ones obtained by G-STRIDE. We investigated 
three regression models that allow identifying subjects 
at risk of future falls, with an accuracy > 0.784 (conven-
tional clinical model), > 0.680 (model with G-STRIDE) 
and > 0.776 (mixed model).

We present 8 cut-off points for the clinical-functional 
variables assessed during the conventional evaluations 
for falls.In particular, it is important to note that the 
gait speed has the highest coefficient, demonstrating 
that the probability of falls increases as this parameter 
changes. Another essential aspect to mention is that 
the proposed cut-off point (0.849  m/sec) agrees with 
those mentioned in the literature [23, 24] In the case 
of other parameters such as SPPB, there is also agree-
ment with what was previously published regarding 
the cut-off point that defines the risk of adverse events 
[18, 24]. In the case of another variable widely used in 
the assessment of falls, such as the TUG, the cut-off 
point coincides with that proposed with some authors 
[25] although other researchers suggest a higher cut-off 
point to detect future falls or disability [26, 27].Regard-
ing the cut-off points in the parameters obtained by 
the device, it is the first approximation made of these 
characteristics and this will allow to know after the 
evaluation of the patient with the device that aspects 
of the gait are pathological and therefore, on which it 
should be possible to do tailored interventions, facili-
tating decision making. In addition, it can have a future 
application for the development of tools or app devices 
that facilitate the visualization of results, streamlining 
and simplifying the decision making of the clinician. 
Although there is an incrising number of studies using 
inertial sensors for gait analysis [11, 12] only some 
evaluate cut-off points, suggest specific analysis of 
stance sub-phases or improves TUG performance with 
“instrumented TUG” [28, 29]

Regarding predictive models that allow identify-
ing subjects at risk of future fall we have studied three 
models and while the three models showed the simi-
lar results, the mixed model allow to have a more 

Table 7 Statistics comparing the three models: Coventional (Conv model), G‑STRIDE IMU (IMU model) and Mix model

Variable Conv model IMU model Mix model 4 m walk model SPPB model

Accuracy 0.78 0.69 0.77 0.74 0.69

Sensitivity 0.78 0.72 0.79 0.78 0.70

Specificity 0.79 0.64 0.75 0.64 0.75

PPV 0.80 0.69 0.78 0.74 0.70

NPV 0.77 0.68 0.76 0.74 0.68

Prevalence 0.51 0.54 0.52 0.55 0.52

F1score 0.79 0.71 0.78 0.76 0.70
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information of these clincial and biomechancial features 
related to falls, which provides a more comprehensive 
fall assessment. This screening tool for falls risk assess-
ment could be used in both community and residential 
settings where the device has been evaluated.

Unfortunately, screening tools published to date have 
limited or insufficient ability to predict future falls [5, 
30]. Several reviews address the analysis of different 
screening tools, and it appears that, in community set-
tings, the TUG is the most widely recommended, with a 

sensitivity varying according to the studies between 
0.68 and 0.76, a specificity  between 0.49 and 0.74 and 
an AUC between 0.72 and 0.80 [26, 31, 32]. these dif-
ferences may be due not only to the methodology used 
but also to the type of patients, or cut-off points cho-
sen, and the differences are also observed in other tools 
so that authors recommend using several complemen-
tary tools [30, 32].

The mixed clinical-kinematic G-STRIDE model that 
shows an accuracy of 0,776. This approach to  fall risk 

Fig. 6 The capability for predicting the probability of fall for the three models (conventional model, IMU model and Mix model)
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assessment is novel, since there are no predictive mixed 
models that sum the  main clinical/exploratory risk fac-
tors with those collected by sensors in real word for 
falls prediction. We have found an interesting study by 
Martínez-Ramirez et al. that propose the use of a mixed 
model with trunk kinematic parameters during walking 
finding a more accurate frailty classification as the model 
could improve the early detection of prefrail status [33].

On the contrary,  there are also a limited number of 
studies that explore the use of predictive models  based 
on inertial systems or other sensory methodology and 
although there is a wide  variety of technological solu-
tions, they have been tested in different locations and 
with different measurements resulting in heterogeneous 
and insufficient results to reach firm conclusions [34].

In Fig. 2, it can be seen a good separability among fall-
ers (red) and no fallers (green),  using as a cut-off point 
the value 0.5. The output of the logistic regression indi-
cates the  probabilities, which if lower than 0.5 means a 
prediction as a”non faller”, and a  probability larger than 
0.5 is considered as”faller”. The tails within the wrong 
response  (red tail to the left and green tail to the right) 
can be false positive or negative, or even  could be the 
warning of future risk of fall for non-up today fallers, or 
no risk of fall for  previous fallers.  It is necesary to test 
these models in future studies to confirm the results.

This has strong implications, since the same results 
can be obtained from a reduced number of tests with 
complementary conventional measurements, such as 
the  FES1, equilibrium, strength and the knowledge of 
physical activity by the patient; with the complement of 
some IMU-based features.  In fact, the scientific litera-
ture identifies various measuring instruments as possible 
predictive tools of falls in the elderly [35, 36] but main-
tain the biases of human subjectivity or lack of precision 
details as the G-STRIDE device can offer.

The present study has several strengths such as sample 
size, advanced age representation, have been carried out 
in different settings (out-patient clinic, nursing homes 
and home) or collecting numerous functional tests. How-
ever, it is also necessary to point out that it would have 
been interesting to make a follow up to know clinical 
evolution of participants to detect future falls and evalu-
ate the proposed predictive models. We believe that this 
could be the objective for a future study.

We can therefore conclude that the G-STRIDE IMU 
device allows to evaluate up to 17 gait parameters iden-
tifying 24 cut-off points and predict the risk of falls using 
a mixed model with an accuracy of 0,776.In this way, 
G-STRIDE IMU device contributes to improving falls 
evaluation in elderly in a more flexible and agile way, in 
real life conditions and with greater accuracy.
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