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Abstract
Background We aimed to establish risk factors for stroke-associated pneumonia (SAP) following intracerebral 
hemorrhage (ICH) and develop an efficient and convenient model to predict SAP in patients with ICH.

Methods Our study involved 1333 patients consecutively diagnosed with ICH and admitted to the Neurology 
Department of the First Affiliated Hospital of Wenzhou Medical University. The 1333 patients were randomly 
divided (3:1) into the derivation cohort (n = 1000) and validation Cohort (n = 333). Variables were screened from 
demographics, lifestyle-related factors, comorbidities, clinical symptoms, neuroimaging features, and laboratory 
tests. In the derivation cohort, we developed a prediction model with multivariable logistic regression analysis. In 
the validation cohort, we assessed the model performance and compared it to previously reported models. The area 
under the receiver operating characteristic curve (AUROC), GiViTI calibration belt, net reclassification index (NRI), 
integrated discrimination index (IDI) and decision curve analysis (DCA) were used to assess the prediction ability and 
the clinical decision-making ability.

Results The incidence of SAP was 19.9% and 19.8% in the derivation (n = 1000) and validation (n = 333) cohorts, 
respectively. We developed a nomogram prediction model including age (Odds Ratio [OR] 1.037, 95% confidence 
interval [CI] 1.020–1.054), male sex (OR 1.824, 95% CI 1.206–2.757), multilobar involvement (OR 1.851, 95% CI 1.160–
2.954), extension into ventricles (OR 2.164, 95% CI 1.456–3.215), dysphagia (OR 3.626, 95% CI 2.297–5.725), disturbance 
of consciousness (OR 2.113, 95% CI 1.327–3.362) and total muscle strength of the worse side (OR 0.93, 95% CI 0.876–
0.987). Compared with previous models, our model was well calibrated and showed significantly higher AUROC, 
better reclassification ability (improved NRI and IDI) and a positive net benefit for predicted probability thresholds 
between 10% and 73% in DCA.
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Background
Stroke-associated pneumonia (SAP) was defined as pneu-
monia complicating the first 7 days after stroke onset in 
nonventilated patients [1]. As a frequently encountered 
complication after stroke, SAP developed in 6.5-33% 
patients with stroke [2–7]. SAP increases the economic 
burden on stroke patients [8], lengthens the hospitaliza-
tion duration, and is associated with a poor prognosis by 
increasing the risk of a negative and fatal outcome [9]. 
Therefore, prompt identification of risk factors associated 
with SAP and making preventive interventions may help 
reduce the risk of developing SAP and thus benefiting the 
patients.

Several risk factors related to the development of SAP 
have been identified in previous studies. These include 
older age, male, hypertension, diabetes, atrial fibrillation 
[10], previous history of chronic obstructive pulmonary 
disease (COPD) [11], dysphagia [12], pre-stroke depen-
dence [11], intracerebral hemorrhage (ICH) [13], higher 
admission National Institutes of Health Stroke Scale 
(NIHSS) score [6], lower Glasgow Coma Scale score 
(GCS) [14], infratentorial location [11], extension of 
hemorrhage into ventricles [11], hematoma volume [11], 
stroke-induced immunodepression syndrome [12], and 
increased C-reactive protein [15]. Based on these risk 
factors, some prediction models or scoring systems were 
constructed to help identify patients at elevated risk of 
developing SAP [6, 7, 10, 11, 14].

Studies have shown that patients with ICH have a 
higher risk of developing SAP (8.5-16.9%) [7, 11]com-
pared to patients with ischemic stroke (6.5-12.2%) [6, 7, 
10, 13, 14]. However, most of these studies only included 
patients with ischemic stroke. There are few studies on 
SAP following ICH. One is ISAN score, which was devel-
oped from a multi-center registry including both patients 
with ischemic stroke and ICH and incorporated param-
eters including pre-stroke dependence, sex, age, and 
NIHSS score [7]. Because this model does not include 
ICH-specific variables, it did not perform well in ICH 
patients, with a AUROC of 0.71 (0.66 to 0.77) compared 
to 0.78 (0.76 to 0.80) in the patients with ischemic stroke 
[7]. Another one was ICH-associated pneumonia score 
(ICH-APS). It developed two prediction models with or 
without hematoma volume as an included variable (ICH-
APS-B and ICH-APS-A, respectively). Other variables 
in the prediction models included age, current smoking, 
excess alcohol consumption, COPD, pre-stroke depen-
dence, admission GCS score, admission NIHSS score, 

dysphagia, location of ICH, and intraventricular exten-
sion [11]. This scoring model is relatively complex, in 
which the GCS and NIHSS scores overlap to some extent 
and may have collinearity. Different parts of the NIHSS 
score have different impacts on SAP development. For 
example, paralysis and dysphasia probably contributed 
more to SAP development than ataxia and loss of visual 
field. Direct use of NIHSS score without considering the 
specific factors may weaken some critical factors’ influ-
ence on SAP.

We aimed to establish risk factors for SAP following 
ICH from more specific and simplified clinical variables 
and to build a more efficient and convenient model to 
predict SAP in patients with ICH.

Methods
Study design and source of data
This retrospective cohort study involved 1333 patients 
consecutively diagnosed with ICH and admitted to the 
Neurology Department of the First Affiliated Hospital 
of Wenzhou Medical University from January 2010 to 
December 2019. Primary inclusion criteria for the study 
were adult patients (aged ≥ 18 years) diagnosed with ICH 
confirmed by head CT imaging [16]. Exclusion criteria 
included (1) crucial clinical data incomplete or missing 
(e.g., patients without an initial CT performed within 
72 h post-ICH); (2) lung infection developed before onset 
of ICH; (3) severe mental or cognitive impairment before 
ICH and unable to cooperate with the examination.

We sequentially numbered the 1333 patients included 
according to the admission date and designated it as 
the overall cohort dataset. Using the “train_test_split” 
method in Python, we randomly divided the overall 
cohort dataset into derivation and validation cohorts 
at a ratio of 3:1, with 1000 patients in the derivation 
cohort and 333 patients in the validation cohort. This 
study obtained approval by the Ethics Committee of the 
First Affiliated Hospital of Wenzhou Medical University 
(No.2020 − 185). Informed consent was obtained ver-
bally through telephone interviews with the participants 
or their legal representatives and how their data will be 
collected, used, and protected were explained to them. 
To protect privacy, patients’ identifying information 
(e.g., names, addresses) were removed from the dataset 
throughout the research to ensure participants’ anonym-
ity and the data is stored securely using encryption and 
access controls.

Conclusions We developed a simple, valid, and clinically useful model to predict SAP following ICH, with better 
predictive performance than previous models. It might be a promising tool to assess the individual risk of developing 
SAP for patients with ICH and optimize decision-making.

Keywords Intracranial hemorrhage, Stroke-associated pneumonia, Predictors, Nomogram, Validation
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Variables
We collected data from the electronic medical records 
system of the First Affiliated Hospital of Wenzhou Medi-
cal University at the time of initial admission, including 
demographics, life style-associated factors, comorbidi-
ties, clinical symptoms, neuroimaging characteristics, 
and laboratory examinations. Demographic variables 
included sex aand age at the time of ICH. Lifestyle fac-
tors included current smoking and alcohol intake status. 
The subject’s medical history was notable for comor-
bidities that comprised hypertension, diabetes, hyper-
lipidemia, ischemic heart disease, hyperuricemia, and 
COPD. Variables associated with the clinical symptoms 
included pre-stroke dependence (modified Rankin Scale 
[mRS] ≥ 2), presence of dysphagia (assessed with a swal-
low test by a physical therapist), the status of conscious-
ness (classified as sopor, somnolence or coma), total 
muscle strength of the worse side (ranging from 0 to10), 
vomiting after ICH, admission GCS and NIHSS. As for 
the status of consciousness, somnolence is characterized 
as a state of strong desire for sleep, or sleeping for unusu-
ally long periods but can be arousable by minor stimu-
lation to obey, answer, or respond. Sopor is defined as a 
condition of abnormally deep sleep that the patients can 
only be arousable by repeated strong or painful stimula-
tion to respond. Coma is defined as a deep state of pro-
longed unconsciousness in which a person cannot be 
awakened, fails to respond normally to stimuli or exhibits 
reflex responses.

In addition, neuroimaging characteristics of ICH were 
recorded, including multilobar involvement, deep region 
involvement, extension of hemorrhage into ventricles, 
and lesion volume. Volumetric assessment of the lesion 
location was determined using the ABC/2 method [17]. 
Based on previous research indicating that hematoma 
volume greater than 20ml is an important factor asso-
ciated with poor prognosis [18, 19], we categorized 
hematoma volume into two groups using 20ml as the 
boundary. Laboratory examinations at initial admission 
included red blood cells, platelet, albumin, blood glucose, 
and creatinine.

The predictive outcome of our study was whether 
patients developed SAP following ICH. SAP was defined 
as a range of pulmonary infections affecting the lower 
respiratory tract that developed within the first 7 days 
after stroke onset according to the recommendations of 
the Pneumonia in Stroke Consensus Group. It was diag-
nosed on a basis of clinical and laboratory indices of 
respiratory tract infection (e.g., fever, new purulent spu-
tum, cough, bronchial breath sounds or worsening gas 
exchange), and supported by typical chest radiographs 
findings [1].

Model development and validation
We randomly divided the study cohort into a derivation 
and validation cohort at a 3:1 ratio. The candidate vari-
ables in the derivation cohort were screened for collin-
earity using the linear regression test. Variance inflation 
factor (VIF) > 5 was considered the existence of collinear-
ity. We performed a univariable analysis of the candidate 
variables in the derivation cohort with simple logistic 
regression and chose variables with P-value < 0.2 for 
multivariable analysis. A total of 16 predictive variables 
were entered into the multivariable logistic regression for 
model development using the forward stepwise method 
based on likelihood ratio test. A nomogram model for 
prediction was constructed, based on the findings of 
the logistic regression, with the model’s goodness of fit 
assessed using the Hosmer-Lemeshow test.

In the validation cohort, we assessed the model perfor-
mance and compared it to previously reported prediction 
models (details of these baseline models were displayed 
in Supplementary Tables  2,3) with the area under the 
receiver operating characteristic curve (AUROC) and 
accuracy (GiViTI calibration belt), decision curve analysis 
(DCA)、net reclassification index (NRI) and integrated 
discrimination index (IDI). The GiViTI calibration belt 
reveals the relationship between predicted and observed 
probabilities, including 80% and 95% confidence intervals 
[20, 21]. DCA was employed to assess the clinical utility, 
especially the capacity to enhance decision-making, of 
the prediction models by quantifying the net benefits at 
various threshold probabilities [22]. NRI and IDI reflect 
the ability of a new model to appropriately reassign peo-
ple into different risk strata [23].

Statistical analysis
Continuous variables, such as age and total muscle 
strength on the worse side, were evaluated in terms of 
mean ± standard deviation (SD) or median and inter-
quartile range (IQR) as appropriate, while categorical 
variables were expressed as counts and percentages. Uni-
variable analysis of candidate variables was performed 
using univariate logistic regression. Variables with a 
two-sided P-value < 0.2 were entered into the multivari-
ate logistic regression to build the prediction model using 
the forward stepwise method. The multivariable analysis 
results were presented using a Forest plot with the ‘forest’ 
package. P-value < 0.05 was considered statistically sig-
nificant in multivariate logistic regression and the GiViTI 
calibration test. Univariable analysis and multivariable 
logistic regression were performed using IBM SPSS Sta-
tistics 25.0 software (IBM Corporation, NY, USA). The 
AUROC, GiViTI calibration belt, DCA analyses, NRI 
and IDI were performed using R version 4.2.1 (R Project 
for Statistical Computing) with the pROC, givitiR, rmda, 
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and PredictABEL libraries (http://lib.stat.cmu.edu/R/
CRAN/).

During statistical analysis, missing data of hematoma 
volume (22/1333,1.7%) and blood glucose (3/1333,0.23%) 
were considered missing completely at random (MCAR) 
[9]. As the missing data was less than 5%, we employed 
pairwise deletion, an indirect (passive) method, to maxi-
mize data utilization.

Results
A total of 1350 patients diagnosed with ICH met the 
primary inclusion criteria. After reviewing the medical 
records, we excluded 12 patients without an initial CT 
performed within 72  h post-ICH, one patient who had 
severe mental or cognitive disorders before ICH and 
could not cooperate with the examination, and 4 patients 
whose lung infection developed before the cerebral 
hemorrhage. Ultimately, 1333 eligible participants were 
included in the study for analysis, including 1000 patients 
in the derivation cohort and 333 patients in the validation 
cohort (Table 1; Fig. 1).

Characteristics and univariable analysis of the derivation 
cohort
Table  2 displays the characteristics of the study 
cohort. The derivation cohort comprised 199 (19.9%, 
n = 199/1000) patients with SAP and 801 (80.1%, 
n = 801/1000) without SAP. The median age of patients 
with SAP is 62 (IQR 55–72), which was significantly 
older than those without SAP (median 59, IQR 52–68, 
p < 0.001, 95%CI 1.016–1.045). Patients with SAP exhib-
ited a higher likelihood of experiencing impaired con-
sciousness (50.8%, n = 101/199 vs. 16.1%, n = 129/801, 
p < 0.001, 95%CI 3.838–7.511) and dysphagia (49.7%, 
n = 99/199 vs. 12.0%, n = 96/801, p < 0.001, 95%CI 5.122–
10.320) compared to those without SAP. Patients with 
SAP demonstrated a significantly lower median total 
muscle strength on the worse side compared to those 
without SAP (median 5, IQR 0–8 vs. median 8, IQR 5–9, 
p < 0.001, 95%CI 0.791–0.866). Multilobar involvement 
(23.6%, n = 47/199 vs. 11.4%, n = 91/801, p < 0.001, 95%CI 
1.628–3.575), lesion volume ≥ 20mL (25.0%, n = 49/196 
vs. 11.1%, n = 87/786, p < 0.001, 95%CI 1.808–3.966) 
and extension of hemorrhage into ventricles (36.2%, 
n = 72/199 vs. 18.7%, n = 150/801, p < 0.001, 95%CI 
1.753–3.454) occurred more frequently in patients 
with SAP compared to those without SAP. Pre-stroke 
dependence was present in 7.0% (n = 14/199) of patients 
with SAP, while only 2.6% (n = 21/801) of those without 
SAP (p = 0.004, 95%CI 1.403–5.632). In the GCS score, 
patients with SAP had a greater probability of scor-
ing ≤ 14 than those without SAP (55.3%, n = 110/199 vs. 
21.2%, n = 170/801, p < 0.001, 95%CI 3.309–6.361). In 
addition, patients with SAP exhibited markedly elevated 

levels of blood glucose and creatinine compared to those 
without SAP.

Multivariable analysis and construction of prediction 
model for SAP
A total of 16 variables with p < 0.2 were entered into the 
multivariate logistic analysis, among which NHISS was 
excluded from further analysis due to the existence of 
collinearity (VIF = 6.899, Supplementary Table  1). These 
included age, sex (male), smoking, COPD, pre-stroke 
dependence (mRS ≥ 2), dysphagia, disturbance of con-
sciousness, total muscle strength of the worse side, GCS 
(≤ 14), multilobar involvement, deep region involvement, 
extension into ventricles, lesion volume(≥ 20mL), albu-
min(< 40  g/L), blood glucose (> 6.1mmol/L) and cre-
atinine(> 97μmol/L). The outcomes of the multivariable 
logistic analysis are shown in Fig. 2A. Variables retained 
in our model included age (Odds Ratio [OR] 1.037, 95% 
confidence interval [CI] 1.020–1.054, P < 0.001), sex (OR 
1.824, 95% CI 1.206–2.757, P = 0.004), multilobar involve-
ment (OR 1.851, 95% CI 1.160–2.954, P = 0.01 ), extension 
into ventricles (OR 2.164, 95% CI 1.456–3.215, P < 0.001), 
dysphagia (OR 3.626, 95% CI 2.297–5.725, P < 0.001), 
disturbance of consciousness (OR 2.113, 95% CI 1.327–
3.362, P = 0.002) and total muscle strength of the worse 
side (OR 0.93, 95% CI 0.876–0.987, P = 0.017). Upon ana-
lyzing the data using logistic regression, we have devel-
oped a nomogram that predicts the individualized risk 
of developing SAP during hospitalization (Fig.  2B). The 
AUROC of the model was 0.793. The Hosmer–Leme-
show test was not significant(P = 0.203).

The application of the nomogram was as follows: based 
on the nomogram, we first calculate the score for each 
prediction indicator and then sum them to obtain the 
total score. The resulting total score can be used to esti-
mate the individualized risk of developing SAP during 
hospitalization. For example, a male patient (24 points) 
was 70-year-old (63 points), had a disorder of conscious-
ness (30 points), and had the symptom of dysphagia (52 
points). Total muscle strength of the worse side was 0 (30 
points), and only one lobe was involved (0 points). The 
hematoma didn’t extend into the ventricle (0 points). The 
cumulative score of the prediction indicators was 24 + 6
3 + 30 + 52 + 30 + 0 + 0 = 199 points, and the correspond-
ing predicted risk for him to develop SAP was about 60% 
(Fig. 2B).

Evaluation and validation of model performance
As shown in Fig.  3, the GiviTI calibration belt demon-
strated that our and ISAN models were well calibrated 
with no significant deviation between the predicted and 
actual probabilities (P = 0.837 and P = 1.000, respectively). 
However, the ICH-A and ICH-B models showed a sig-
nificant dissimilarity between the predicted and actual 

http://lib.stat.cmu.edu/R/CRAN/
http://lib.stat.cmu.edu/R/CRAN/
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probabilities (P < 0.001 and P < 0.001, respectively), which 
means these models were not well calibrated.

To evaluate the discrimination of the prediction model, 
we validated the AUROC of our model in the validation 
cohort and compared it to the ISAN model [7], ICH-
APS-A [11] and ICH-APS-B models [11] (Fig.  4A). The 
AUROC of the validation group (0.8116, 95% CI 0.7499–
0.8733) was significantly higher than that of the ISAN 
and ICH-APS-A/B models (ISAN model: 0.693, 95% 
CI 0.62–0.766; ICH-A model: 0.7167, 95% CI 0.6448–
0.7886; ICH-B model: 0.7228, 95% CI 0.6514–0.7941). 

Delong’s test revealed a significant difference in AUROC 
between our model and any of the three previous models 
(P < 0.05) (Table  3), indicating that our model performs 
significantly better than these previous models in distin-
guishing between patients who will develop SAP or not 
Moreover, our model showed improved performance of 
reclassification than the ISAN, ICHA and ICHB mod-
els, with an NRI of 0.4384 (P < 0.01), 0.5236 (P < 0.01) 
and 0.4784 (P < 0.01), and an IDI of 0.1279 (P < 0.01), 
0.2098 (P < 0.01) and 0.1841 (P < 0.01), respectively 
(Table 3). Both NRI and IDI quantifies the improvement 

Table 1 Baseline characteristics
Variables Overall Cohort

N = 1333
Derivation Cohort
n = 1000

Validation Cohort
n = 333

p-value

Demographics
 Age (years), median (IQR) 60 (52–68) 60 (52–68) 61 (52–68) 0.693
 Sex (male), No./total No. (%) 926/1333 (69.5) 706/1000 (70.6) 220/333 (66.1) 0.120
Life style-associated factors
 Smoking, No./total No. (%) 534/1333 (40.1) 405/1000 (40.5) 129/333 (38.7) 0.570
 Alcohol drinking, No./total No. (%) 516/1333 (38.7) 381/1000 (38.1) 135/333 (40.5) 0.428
Comorbidities
 Hypertension, No./total No. (%) 1219/1333 (91.4) 916/1000 (91.6) 303/333 (91.0) 0.731
 Diabetes, No./total No. (%) 262/1333 (19.7) 192/1000 (19.2) 70/333 (21.0) 0.469
 Hyperlipidemia, No./total No. (%) 275/1333 (20.6) 196/1000 (19.6) 79/333 (23.7) 0.107
 Ischemic heart disease, No./total No. (%) 42/1333 (3.2) 27/1000 (2.7) 15/333 (4.5) 0.103
 Hyperuricemia, No./total No. (%) 81/1333 (6.1) 53/1000 (5.3) 28/333 (8.4) 0.040
 COPD, No./total No. (%) 33/1333 (2.5) 26/1000 (2.6) 7/333 (2.1) 0.613
Clinical symptoms
 Prestroke dependence (mRS ≥ 2), No./total No. (%) 43/1333 (3.2) 35/1000 (3.5) 8/333 (2.4) 0.326
 Dysphagia, No./total No. (%) 257/1333 (19.3) 195/1000 (19.5) 62/333 (18.6) 0.724
 Disturbance of consciousness, No./total No. (%) 317/1333 (23.8) 230/1000 (23.0) 87/333 (26.1) 0.246
  alert 1016/1333(76.2) 770/1000 (77.0) 246/333 (73.8)
  somnolence 209/1333(15.7) 143/1000 (14.3) 66/333 (19.8)
  sopor 88/1333(6.6) 71/1000 (7.1) 17/333(5.1)
  coma 20/1333(1.5) 16/1000 (1.6) 4/333(1.2)
 Total muscle strength of worse side, median (IQR) 8 (3–8) 8 (4–8) 7 (3–8) 0.150
 Vomiting after ICH, No./total No. (%) 279/1333 (20.9) 201/1000 (20.1) 78/333 (23.4) 0.197
 NIHSS# 6 (2–11) 6 (2–11) 7 (2–11) 0.060
 GCS 15 (14–15) 15 (14–15) 15 (14–15) 0.617
Neuroimaging characteristics
 Multilobar involvement, No./total No. (%) 201/1333 (15.1) 138/1000 (13.8) 63/333 (18.9) 0.024
 Deep region involvement, No./total No. (%) 1023/1333 (76.7) 759/1000 (75.9) 264/333 (79.3) 0.206
 Extension into ventricles, No./total No. (%) 291/1333 (21.8) 222/1000 (22.2) 69/333 (20.7) 0.571
 Lesion volume (ml), median (IQR) 7.26 (3.01–14.82) 7.32 (3.02–14.63) 7.00 (3.01–15.12) 0.709
Laboratory Examinations
 Red blood cell (1012/L), median (IQR) 4.55 (4.24–4.91) 4.56 (4.24–4.92) 4.55 (4.25–4.89) 0.536
 Platelet (109/L), median (IQR) 204 (169–244) 204 (169–245) 204 (168–244) 0.996
 Albumin, median (g/L) (IQR) 40.15 (37.6–42.7) 40.25 (37.6–42.7) 40.1 (37.9–42.7) 0.762
 Blood glucose (mmol/L), median (IQR) 5.7 (4.9–6.9) 5.7 (4.9–6.9) 5.8 (4.9–7.2) 0.292
 Creatinine (μmol/L), median (IQR) 67 (56–80) 67 (56–80) 67 (56–81) 0.875
Continuous variables that exhibited normal distribution were presented as mean (standard deviation [SD]); non-normal variables were presented as median 
(interquartile range [IQR]); quantitative variables were presented as number/total number (%).

SAP: stroke-associated pneumonia; COPD:chronic obstructive pulmonary disease; mRS : modified Rankin scale; ICH:intracerebral hemorrhage; NIHSS: National 
Institutes of Health Stroke Scale; GCS: Glasgow Coma Scale score;

#VIF = 6.899, exclude from further analysis
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in a model’s ability to discriminate between two groups 
or classes (e.g., diseased vs. non-diseased) compared to 
a baseline or reference model. The NRI calculates the 
proportion of individuals whose risk classification is 
improved minus the proportion whose classification is 
worsened by the new model, compared to the baseline 
previous models; while the IDI calculates the difference 
in the average predicted probabilities of the positive and 
negative classes between the two models. Therefore, 
these results indicated that our model had a substan-
tially improvement in predictive accuracy over previous 
models.

In DCA (Fig.  4B), the curve for our model showed 
a positive net benefit for the threshold probabilities 
between 10% and 73% compared to the strategies of 
assuming that all or none of the patients had SAP (i.e., 
treat-all or treat-none strategies). Moreover, the net ben-
efit of our model is significantly better than any of the 
three previous models within the threshold probabilities 
of 10 − 73%.

Discussion
In this study, we developed a simple, valid, and clinically 
useful model to predict the probability of developing SAP 
for individual patients with ICH. This nomogram model 
incorporated simple risk factors, including male gen-
der, older age, symptoms of dysphagia, disturbance of 

consciousness, weaker muscle strength, ICH with multi-
lobar involvement and extension into ventricles. All the 
variables are easy to collect immediately after diagnosis 
of ICH. With this model, clinicians can quickly calculate 
the risk of individual patients developing SAP, which may 
help with effective management decisions. Thus, those 
with a high risk of developing SAP may benefit from 
more intensive care, preventative interventions, and ear-
lier treatment.

Several risk factors for developing SAP have been iden-
tified in previous studies. Among them, older age is a 
well-recognized risk factor for pneumonia [24] and has 
been consistently found in most of the studies for SAP, 
either in ischemic or hemorrhagic stroke [10, 11]. This 
could be attributed to the gradual decline in people’s 
immune function with increasing age, making older indi-
viduals more susceptible to infections, including SAP 
[25]. Male sex is included in our and the ISAN model but 
not the ICH-APS model. This is probably because current 
smoking and excess alcohol consumption, which were 
more frequent in males, are already incorporated as risk 
factors in the ICH-APS model [7, 11]. Pre-stroke depen-
dence is consistently included in the ISAN and ICH-APS 
model models, although they were defined as ≥ 2 in the 
ISAN model [7] while as ≥ 3 in the ICH-APS model [11]. 
In this study, although more patients with SAP had pre-
stroke dependence (mRS ≥ 2), it was not included in the 

Fig. 1 Flow chart of patient recruitment. Flow-chart concisely outlines sequential application of inclusion and exclusion criteria that ultimately lead to 
the definition of the final study cohort
SAP: stroke-associated pneumonia, ICH: intracerebral hemorrhage
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final model after regression analysis. A possible expla-
nation might be that we directly included ‘total muscle 
strength of the worse side’ as a variable, which reflects 
not only the affected limbs of the index stroke but also 
the pre-stroke disability.

Regarding variables associated with stroke symptoms, 
compared to the ISAN and ICH-APS model, which 
included an overall NHISS score, our model indepen-
dently included muscle strength (represented as total 
muscle strength of the worse side), dysphagia and dis-
turbance of consciousness. We chose the three variables 
because they were theoretically critical neurological 
signs associated with SAP as both decreased limb mus-
cle strength and disturbed consciousness can impair the 
patient’s ability to change positions, leading to pulmonary 

fluid retention and accumulation of secretions and so 
increasing the risk of pneumonia, while dysphagia may 
result in aspiration and increase the risk of SAP. They 
were consistently recognized as risk factors in previous 
studies for SAP as well [11, 26, 27]. In addition, they are 
simpler to evaluate and have a lower collinear relation-
ship to the other variables compared to the NHISS score.

As an ICH-specific characteristic, ‘extension into ven-
tricles’ is a significant and independent factor contribut-
ing to both morbidity and mortality [28] and its inclusion 
as a risk factor in both ICH-APS model and ours is not 
surprising. As for other hemorrhage-specific charac-
teristics, the hematoma volume is included in the ICH-
APS-B model, while multilober involvement is in our 
model. To some extent, these two variables are similar, 

Table 2 Univariable analysis
Variables Derivation Cohort n = 1000 Validation Cohort n = 333

patients with
SAP n = 199

patients 
without SAP 
n = 801

p-value patients 
with SAP 
n = 66

patients 
without SAP 
n = 267

p-value

Demographics
 Age (years), median (IQR) 62 (55–72) 59 (52–68) < 0.001* 64 (53–72) 60 (52–67) 0.035*
 Sex (male), No./total No. (%) 149/199 (74.9) 557/801 (69.5) 0.140 43/66 (65.2) 177/267 (66.3) 0.861
Life style-associated factors
 Smoking, No./total No. (%) 90/199 (45.2) 315/801 (39.3) 0.130 27/66 (40.9) 102/267 (38.2) 0.686
 Alcohol drinking, No./total No. (%) 81/199 (40.7) 300/801 (37.5) 0.398 26/66 (39.4) 109/267 (40.8) 0.832
Comorbidities
 Hypertension, No./total No. (%) 180/199 (90.5) 736/801 (91.9) 0.515 58/66 (87.9) 245/267 (91.8) 0.327
 Diabetes, No./total No. (%) 38/199 (19.1) 154/801 (19.2) 0.967 11/66 (16.7) 59/267 (22.1) 0.334
 Hyperlipidemia, No./total No. (%) 35/199 (17.6) 161/801 (20.1) 0.425 6/66 (9.1) 73/267 (27.3) 0.003*
 Ischemic heart disease, No./total No. (%) 7/199 (3.5) 20/801 (2.5) 0.429 5/66 (7.6) 10/267 (3.7) 0.188
 Hyperuricemia, No./total No. (%) 10/199 (5.0) 43/801 (5.4) 0.847 6/66 (9.1) 22/267 (8.2) 0.823
 COPD, No./total No. (%) 8/199 (4.0) 18/801 (2.2) 0.165 3/66 (4.5) 4/267 (1.5) 0.142
Clinical symptoms
 Prestroke dependence (mRS ≥ 2), No./total No. (%) 14/199 (7.0) 21/801 (2.6) 0.004* 3/66 (4.5) 5/267 (1.9) 0.219
 Dysphagia, No./total No. (%) 99/199 (49.7) 96/801 (12.0) < 0.001* 36/66 (54.5) 26/267 (9.7) < 0.001*
 Disturbance of consciousness, No./total No. (%) 101/199 (50.8) 129/801 (16.1) < 0.001* 34/66 (51.5) 53/267 (19.9) < 0.001*
 Total muscle strength of worse side, median (IQR) 5 (0–8) 8 (5–9) < 0.001* 5 (0–8) 7 (3–8) 0.002*
 Vomiting after ICH, No./total No. (%) 46/199 (23.1) 155/801 (19.4) 0.236 17/66 (25.8) 61/267 (22.8) 0.617
 GCS(≤ 14 ) 110/199 (55.3) 170/801 (21.2) < 0.001* 35/66 (53.0) 57/267 (21.3) < 0.001*
Location of intracerebral hemorrhage
 Multilobar involvement, No./total No. (%) 47/199 (23.6) 91/801 (11.4) < 0.001* 21/66 (31.8) 42/267 (15.7) 0.003*
 Deep region involvement, No./total No. (%) 160/199 (80.4) 599/801 (74.8) 0.098 51/66 (77.3) 213/267 (79.8) 0.654
 Extension into ventricles, No./total No. (%) 72/199 (36.2) 150/801 (18.7) < 0.001* 27/66 (40.9) 42/267 (15.7) < 0.001*
 Lesion volume(≥ 20mL), No./total No. (%) 49/196 (25.0) 87/786 (11.1) < 0.001* 20/64 (31.3) 31/265 (11.7) < 0.001*
Laboratory Examinations
 Red blood cell (< 3.8 1012/L ), No./total No. (%) 15/199 (7.5) 48/801 (6.0) 0.423 7/66 (10.6) 12/267 (4.5) 0.063
 Platelet(< 125 109/L ), No./total No. (%) 13/199 (6.5) 40/801 (5.0) 0.387 4/66 (6.1) 17/267 (6.4) 0.927
 Albumin(< 40 g/L), No./total No. (%) 103/199 (51.8) 371/801 (46.3) 0.169 32/66 (48.5) 126/267 (47.4) 0.871
 Blood glucose (> 6.1mmol/L), No./total No. (%) 96/199 (48.2) 273/798 (34.2) < 0.001* 35/66 (53.0) 103/267 (38.6) 0.034*
 Creatinine(> 97μmol/L), No./total No. (%) 26/199 (13.1) 62/801 (7.74) 0.019* 9/66 (13.6) 20/267 (7.5) 0.118
Continuous variables that exhibited normal distribution were presented as mean (standard deviation [SD]); non-normal variables were presented as median 
(interquartile range [IQR]); quantitative variables were presented as number/total number (%)

SAP: stroke-associated pneumonia; COPD:chronic obstructive pulmonary disease; mRS : modified Rankin scale; ICH:intracerebral hemorrhage; GCS: Glasgow Coma 
Scale score;
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as a hemorrhage involving multiple lobes usually have 
a larger volume than those within a lobe. As for ‘multi-
lobe involvement’, a hemorrhage involving multiple lobes 
usually have a larger volume than those within a lobe. 
Regarding the mechanism, this was probably associated 
with decreased degree of systemic immune regulation 
due to a large hematoma [29]. However, compared to 
calculating the volume of ICH, multilobe involvement is 
easier to determine.

Except for convenience, the more important aim of 
our study is to improve the model performance for the 
prediction of SAP compared to existing SAP predic-
tion models developed for ICH. As for the calibration, 
our model and ISAN model obtained good agreement 
between observed outcomes and predictions, while 
the ICH-APS-A and ICH-APS-B models were not well 
calibrated with significant underestimation. Regard-
ing discrimination, our nomogram model performed 
significantly better than the ISAN and ICH-APS-A/B 
models, with an AUROC of 0.8116 versus 0.6930 and 
0.7167/0.7228 in our validation sample. As AUROC may 
not be the optimal measure for evaluating models aimed 
at predicting future risk or stratifying individuals into risk 
categories [30] and not sensitive in comparing models 
with a well-performed baseline model [31], we used NRI 
and IDI as complement measures to test the discrimina-
tion ability [32, 33]. The results further supported that 
our model offered significant improvement over previ-
ous models. Although a model with better discrimination 
and calibration has theoretically been a better guide to 
clinical management [34], they are not enough to evalu-
ate whether the prediction model improves clinical deci-
sion-making. Therefore, we conducted DCA to assess the 
clinical decision-making ability of the models [35]. As a 
result, our model demonstrated a positive net benefit for 

predicted probability thresholds between 10% and 73%. 
All these analyses further demonstrated that our model 
was a more accurate prediction model to identify patients 
with ICH at higher risk of developing SAP. This allows 
healthcare providers to tailor the allocation of medical 
resources to take more intensive care or interventions 
for these high-risk patients to prevent the progression of 
SAP or reduce its severity, thus contributing to an overall 
improved prognosis of the population with ICH.

Our study had several limitations. First, our study 
included only patients admitted into the neurology 
department, and those who died in the emergency 
department or were admitted to the intensive care unit 
were not included. This will inevitably result in selection 
bias and the underestimation of outcome events (SAP). 
Therefore, our model is more applicable to ICH patients 
with mild to moderate stroke severity compared to those 
with severe conditions. However, this problem also 
existed in the previous studies, as the median of NIHSS 
score of the study subjects was 9 for the ICH-APS-A/B 
models (IQR 3–16) and 4 for the ISAN model (IQR 2–9). 
Although the severity of our study population is compara-
ble to these previous studies, caution should be exercised 
when interpreting the results due to the common selec-
tion bias in the patient populations of all three studies. 
Further studies should be conducted to validate the pre-
dictive performance of the models for those with severe 
stroke. Second, as a retrospective study, 12 patients were 
excluded from the study due to without an initial CT per-
formed within 72 h post-ICH. This might also lead to the 
objective existence of selection bias. Third, other clini-
cal data not considered in the existing model may have 
a confounding effect and impact the pneumonia risk. For 
example, the patient’s medication history, such as use of 
glucocorticoids or immunosuppressive drugs, may result 

Fig. 2 Prediction of SAP probability using results of multivariable analysis. A, Forest plot based on the results of multivariable analysis. B, Prediction no-
mogram based on the results of the multivariable analysis conducted on the entire cohort
OR: Odds Ratio, 95% CI: 95% confidence interval
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in an immunosuppressive state and influence the risk of 
developing SAP. Lastly, this is a single-center study with 
internal verification conducted on patients in a tertiary 
hospital. Therefore, it is not clear whether the model can 
be applied to external patients, especially those from sec-
ondary and primary healthcare institutions. To address 
these limitations, in future investigations, we should 
carry out a large-sized prospective study, including not 
only patients admitted to the neurology department but 
also those who experienced mortality in the emergency 

department or were admitted to the intensive care unit, 
and conduct external validation at both secondary and 
primary healthcare institutions.

Conclusions
In summary, male patients with older age, multilobar 
involvement, the extension of ICH into ventricles, dys-
phagia, disturbance of consciousness, and worse muscle 
strength were at higher risk of developing SAP follow-
ing ICH. The nomogram model obtained in this study 

Fig. 3 Calibration Belts in the Validation cohort. (A) our prediction model, (B) the ISAN model, (C) the ICH-A model, (D) the ICH-B model. The calibration 
bands with 80% and 95% confidence levels are shown in light and dark gray, respectively. The bottom-right table shows the predicted probability ranges. 
P > 0.05 were deemed that the model fit was good
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is convenient and shows better predictive performance 
than previous models. Therefore, it might be a promis-
ing tool to assess the individual risk of developing SAP 
for patients with ICH and thus facilitate preventive mea-
sures. Nevertheless, a further improved prediction model 
can be achieved through a larger-sized well-designed 
prospective research with external validation in the 
future.
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