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Abstract
Backgrounds Gait disorder is associated with cognitive functional impairment, and this disturbance is more 
pronouncedly when performing additional cognitive tasks. Our study aimed to characterize gait disorders in mild 
cognitive impairment (MCI) under three dual tasks and determine the association between gait performance and 
cognitive function.

Methods A total of 260 participants were enrolled in this cross-sectional study and divided into MCI and cognitively 
normal control. Spatiotemporal and kinematic gait parameters (31 items) in single task and three dual tasks (serial 
100-7, naming animals and words recall) were measured using a wearable sensor. Baseline characteristics of the two 
groups were balanced using propensity score matching. Important gait features were filtered using random forest 
method and LASSO regression and further described using logistic analysis.

Results After matching, 106 participants with MCI and 106 normal controls were recruited. Top 5 gait features in 
random forest and 4 ~ 6 important features in LASSO regression were selected. Robust variables associating with 
cognitive function were temporal gait parameters. Participants with MCI exhibited decreased swing time and terminal 
swing, increased mid stance and variability of stride length compared with normal control. Subjects walked slower 
when performing an extra dual cognitive task. In the three dual tasks, words recall test exhibited more pronounced 
impact on gait regularity, velocity, and dual task cost than the other two cognitive tests.

Conclusion Gait assessment under dual task conditions, particularly in words recall test, using portable sensors could 
be useful as a complementary strategy for early detection of MCI.
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Introduction
Mild cognitive impairment (MCI) is an intermediate 
transitional stage between normal aging and dementia 
that is predominately manifested by the decline of cog-
nitive functions involving memory, executive function, 
language, attention, and visuospatial roles, but not sig-
nificantly affecting the ability of daily life or meeting the 
diagnostic criteria of dementia. Epidemiological evidence 
showed that MCI affected about 20% of the aging indi-
viduals worldwide and 10%~15% of them progressed into 
dementia annually, which in turn leading to decreased 
quality of life of the population and escalated social eco-
nomic burden [1–3]. Therefore, early identification and 
prophylactic intervention of MCI will retard its pro-
gression and reduce the transitional risk to dementia in 
the scenario that there is a lack of effective therapeutic 
options for reversing dementia. Currently, neuropsychi-
atric scales depending screen of MCI is time-consuming 
and requires a professional clinician; the result scores are 
always influenced by educational level and other personal 
factors of the subjects [4].

Walking is a common and essential activity orchestrat-
ing the functionalities of a variety of muscles and tendons 
as well as nervous system, which allows people to keep 
their balance, maintain stability, and move their body 
from one place to another [5]. Gait refers to the posture 
of a healthy person when walking and it varies with age, 
body condition, training and certain disease conditions 
[6]. Qualitative and quantitative gait assessment using 
observational scales and instrumental analysis are help-
ful for the judgement of a normal or pathological move-
ment pattern; it has been used in the clinical diagnosis of 
orthopedics, rehabilitation, neurological and other dis-
eases, especially in the neurological diseases [7–9]. As a 
compelling instrument for quantitative gait analysis, the 
recently applied wearable sensor enables the quantitative 
gait measurement even to monitor subtle changes during 
walking, showing great promise in replacing the human 
observational scale or optical motion capture system due 
to its low cost, real-time, portable, versatile and informa-
tive features [10].

Up to date, multiple lines of studies have confirmed 
that walking is a learned behavior rather than an auto-
matic process that requires the coordination of cognitive 
function [11, 12]. Gait performance is associated with 
individual capacities of executive function and working 
memory, especially in the dual-task tests [13–15]. Dual-
task gait test is a measuring modality to monitor changes 
of gait parameters when simultaneously performing 
an attention-demanding cognitive task when walking. 

Previous studies revealed that the gait patterns in per-
forming dual task tests are disturbed more frequently and 
pronouncedly in subjects with MCI [16, 17]. Thus, gait 
analysis in dual task may represent a promising option 
for the diagnosis and outcome prediction in the target 
population. However, no consensus has been achieved 
with regarding to the gait characteristics in distinguish-
ing MCI from normal aging populations due to the vari-
eties in gait measuring tools, loaded cognitive tasks, 
reported gait parameters as well as individual cognitive 
capability [18]. Our study aimed to analyze gait param-
eters (spatiotemporal and kinematic characteristics) of 
MCI using a wearable sensor under single task and three 
different cognitive tasks, including counting backwards 
by 7s, naming animals and words recall. Then we selected 
important gait features contributing to MCI and com-
pared the performance of gait in different tasks, which 
may provide objective evidence for the clinical screening 
of MCI.

Methods
Participants
Participants reporting subjective cognitive decline 
attended the memory clinics of our hospital from 
December 2020 to December 2021. Eligible subjects met 
the inclusion and exclusion criteria were enrolled in this 
cross-sectional study for further analysis. The inclusion 
criteria were: (1) aging over 50; (2) voluntary to partici-
pate in the gait test and provide the informed consent; 
(3) being able to complete the questionnaire and test 
independently or with the assistance of the examiners. 
The exclusion criteria were: (1) patients diagnosed with 
Alzheimer’s Disease (AD) or dementia; (2) severe verbal, 
hearing, optical impairments affecting the gait perfor-
mance; (3) walking difficulty due to lower limbs muscu-
loskeletal diseases, including trauma, arthritis, pain or 
orthopedic surgeries; (4) central or peripheral nervous 
diseases that cause gait disorders, such as cerebral stroke, 
Parkinson’s disease, Lewy body dementia, spinal diseases, 
normal pressure hydrocephalus; (5) severe concomitant 
intracranial diseases such as encephalitis, meningitis, sei-
zure, and brain tumors.

Clinical characteristics of the eligible participants were 
recorded, including age, gender, educational years, smok-
ing or alcohol consuming and medical history of diseases 
as well as memory complaints. Participants were inter-
viewed about whether they had a subjective memory 
decline for 3 months or not, and whether they were wor-
ried about this decline. Meanwhile, their family history 
of AD/dementia were asked by “Did your parents ever 
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suffer from Alzheimer’s disease/dementia?”. Sleep disor-
der referred to reduced sleep duration compared to age 
and sex matched population, difficulty in falling asleep, 
frequent awakenings, early morning awakenings, and 
excessive daytime sleepiness, and was reported by the 
subjects themselves. Afterwards, the subjects were exam-
ined with cognitive scales, daily functioning as well gait 
performance. The diagnosis of MCI was based on the 
Petersen criteria [19], briefly as followings, (1) subjective 
complaints of memory decline or other cognitive decline 
on self- or informant report or doctors’ assessment; (2) 
one or more cognitive domain impairment based on neu-
ropsychological testing standardized by the patient’s age 
and educational background; (3) intact daily functioning 
in ADL scales and being independent in daily living; (4) 
not meeting criteria of dementia with a clinical demen-
tia rating (CDR) score less than 0.5. MCI was diagnosed 
by two independent neurological doctors after compre-
hensive consideration of clinical characteristics, medical 
history, daily life ability and neuropsychological testing 
performance. Subjects didn’t meet the diagnostic cri-
teria were categorized to be cognitive normal control 
(NC). Finally, 134 patients with MCI and 126 NC were 
included. This study was approved by the ethnic commit-
tee of Xi’an No.3 Hospital and followed the principles of 
the Declaration of Helsinki. The informed consents were 
obtained from all participants.

Cognitive functional assessment
Cognitive function was assessed using the mini-mental 
status examination (MMSE), Montreal cognitive assess-
ment (MoCA) and CDR scales. Daily functioning was 
evaluated using Activity of Daily Living (ADL) scale. 
MMSE scale assesses cognitive functions of 5 domains, 
including orientation, memory-recall, attention-calcula-
tion and language; while MoCA scale further measures 
visuospatial-executive and abstraction abilities. Both 
MMSE and MoCA have a total score of 30 points, and a 
higher score indicates better cognitive ability. One more 
point will be added to the original total score of MoCA 
in case of the educational years one attains are less than 
12, and the final score < 26 indicates cognitive impair-
ment [20, 21]. MMSE ≤ 24 was used to exclude subjects 
with possible dementia [22, 23]. CDR scale was used to 
grade the severity of dementia by scoring from 0 to 3 
with score ≥ 1 diagnosed as mild to severe dementia [24]. 
ADL scale is used to assess daily life ability to assist the 
diagnosis of MCI [25]. The total score of ADL is 100 and 
a higher score indicates a more independent status of the 
participant.

Gait assessment
Intelligent device for energy expenditure and activity 
(IDEEA version 3.0, MiniSun, CA, USA) is an integrated 

portable system used to monitor energy consump-
tion and physical activities with an accuracy > 98% 
[26]. The device carries five miniaturized sensors (each 
16 × 14 × 4 mm) that are positioned one on the sternum, 
one on the anterior part of each thigh and one under the 
plantar arch of each foot, all fixed to the skin by an adhe-
sive tape before the measurement. The sensors measure 
walking parameters with a data acquisition frequency 
of 32  Hz and then they project these real-time anthro-
pometric signals of relative position and acceleration to 
three microprocessors (one advanced microprocessor 
and two secondary microprocessors) via connected flex-
ible wires. The 32-bit, 32 MHz advanced microprocessor 
with 200 MB of data storage is attached to the subject’s 
belt and receives signal input from the sensors positioned 
on sternum or thighs, and the two secondary micropro-
cessors receive signals from sensors on two feet and then 
return these data to the advanced microprocessor wire-
lessly. Then, acquired data are transferred to a peripheral 
computer via a 12-bit AC/DC converter for signal analy-
sis using an Actview™ software, which automatically pro-
cesses 2 h of acquired data in less than 30 s.

IDEEA3.0 system was applied to monitor gait param-
eters of the participants when performing a single task or 
three dual-tasks in our study. After checking the device, 
the sensors and recorders were fixed as the instruction. 
An error message would appear if the sensors were not 
in line or the heel of a shoe was higher than 2.5 cm. Then, 
the subject was asked to walk naturally to acclimate to 
the device. During this period, green LED lights on the 
3 microprocessors (one each) flashing twice per second 
indicated that all components of the device were cor-
rectly connected and worked well. Otherwise, the device 
was checked again until the alarm signals terminated. 
The gait test was performed in a quiet room, and the sub-
ject was requested to walk 12 m in a straight line on the 
ground marked with starting and ending points. The gait 
data of the middle 10  m (automatically selected by the 
device approximately from the 2nd to 11th meters) were 
collected for final data analysis. Ensure all gait data from 
the 5 sensors were collected under four tasks, or this sub-
ject would be excluded for further analysis. Gait param-
eters encompass spatiotemporal (step and stride length, 
velocity, cadence, stance, swing and double support dura-
tion, etc.) and kinematic characteristics (thigh twitch 
acceleration, thigh swing work, ground reaction forces 
and heel angle to the ground). Variability of stride time 
or stride length (stride time/length CV) were calculated 
by dividing the standard variability of stride time/length 
to their mean values. Dual task cost (DTC) of velocity 
was used to assess the influence of cognitive task chal-
lenge on gait performance; it was calculated as [(veloc-
ity of single task-velocity of dual task)/velocity of single 
task] × 100%.A total of four gait trials were administered 
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to each patient. Single task trail was performed when 
walking as usual to gather baseline gait parameters in 
the absence of cognitive load. For the dual task tests, the 
subject was asked to finish the three additional cognitive 
tasks when walking, including serial 100-7, naming ani-
mals and specific word recalling, respectively. No priority 
was allowed to finish either motor or cognitive task. Only 
one trial was allowed for each task to balance and mini-
mize the effects of learning and fatigue. In order to avoid 
the events of “walking without thinking” and “thinking 
without walking” during the gait test, the subject was 
immediately reminded of “keep thinking” when he/she 
discontinued the cognitive task, or “keep walking” when 
he/she stopped walking. In addition, if the subject made 
an error in the calculation/recall/naming process, the 
cognitive task proceeded regardless of the error.

Data analysis
All data were analyzed using R software version 4.1.2 
(Vienna, Austria) and SPSS 26.0 (IBM Corp., Chicago, 
Illinois, USA). The MCI and NC groups were 1:1 matched 
using propensity scores with a caliper value of 0.4. The 
matched covariates included gender, age, height, weight, 
and educational years. Countable data were presented as 
frequency and percentage (%) and the difference between 
two groups was compared using Chi-square test or 
Fisher’s exact test. Quantitative data were expressed as 
means ± standard deviation (SD) and statistical difference 
between two groups was analyzed using independent 
t-test. Difference among multiple groups were compared 
using one-way analysis of variance (ANOVA) followed 
by Bonferroni post-hoc test. Important features of gait 
parameters associating with MCI were selected using 
recursive feature elimination (RFE) based random forest 
method and LASSO regression to screen robust variables 
using a random training set/test set at 7:3. A total of 31 
items of gait features were input into Random Forest clas-
sifiers with ntree = 500 and mtry = 2 using ‘randomForest’ 
package of R software. The mean reduction in Gini index, 
indicated by the principle of impurity reduction, was 
used to access the feature importance in classification. 
A greater decrease in Gini index means a higher impor-
tance of the feature. LASSO regression with 10-fold 
cross-validation was carried out using ‘glmnet’ package 
of R software to centralize and standardize the included 
variables, and the best-fit lambda (λ) value at λmin or λ1SE 
was obtained. Univariate and adjusted logistic regres-
sion analysis were applied to quantitatively describe the 
association between selected gait parameters with MCI. 
P < 0.05 was considered statistically significant.

Sample size was calculated using PASS15.0 software 
(NCSS LLC., Kaysville, Utah, USA)based on a statisti-
cal power of 0.8 and a two-tailed α level of 0.05 using a 
two-sample independent t-test. With reference to the 

previous studies on means and SD values of gait param-
eters including velocity and DTC for NC and MCI [1, 
27, 28], a minimum of 83 participants per group were 
required. Power analysis was performed using PASS15.0 
software based on a two-sample t-test of the means and 
SD of gait parameters (such as velocity, DTC, swing time) 
under the four tasks and the sample size in this study. The 
significance level was set at 0.05 (two-sided). The esti-
mated power of this study was above 0.813.

Results
Baseline characteristics of the participants
A total of 380 participants attended the screening of this 
cross-sectional study, 76 subjects were excluded for not 
meeting the inclusion and exclusion criteria; 44 subjects 
were excluded for incomplete demographic data, gait 
testing data or being diagnosed with AD (Fig.  1). Thus, 
260 eligible subjects were enrolled and categorized into 
cognitive normal control (n = 126) and MCI (n = 134) 
based on the diagnostic criteria. The baseline clinical 
characteristics was shown in Table  1. The data showed 
that in the overall population, the participants with MCI 
had higher body weight as well as BMI, and lower edu-
cational level with 6–9 years accounting for 42.5% of 
the group. The two groups had similar comorbid condi-
tions such as cardiovascular diseases, subjective sleep 
disorder and family history of AD. The MoCA sores 
were 26.72 ± 1.98 in NC group and 21.52 ± 2.35 in MCI 
group, indicating a significant difference between the two 
groups (P < 0.05). Meantime, there was statistical differ-
ence in MMSE scores between them (P < 0.001). To bal-
ance the significant confounding variables potentially 
affecting cognitive and gait functions, a matched popula-
tion at a ratio of 1:1 in NC and MCI group was created 
using propensity score matching (PSM) method after 
adjusting gender, age, height, weight, and educational 
years. Eventually, a total of 212 subjects, 106 in each 
group, were matched and most of the significant imbal-
ances were removed without yielding other imbalanced 
variables between the two groups. As expected, signifi-
cant difference on MMSE and MoCA remained existing 
between the NC and MCI groups after PSM matching 
(P < 0.001 for each comparison).

Important feature selection of gait parameters associating 
with cognitive function
In this study, a panel of spatiotemporal and kinematic 
gait parameters as listed in Fig.  2 was measured using 
portable sensors in all the enrolled participants. To 
analyze the association between gait performance and 
cognitive function in the matched population, all gait 
parameters (31 gait characteristics) were pooled into a 
random forest and a LASSO regression model to select 
important features contributing to MCI in single task and 
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three dual-task modes. As shown in Table 2, in different 
task modes, top 5 important features based on random 
forest model were selected and 5 ~ 6 significant features 
at λmin in LASSO model were shown. For the single task, 
the common ranked features included variability of stride 
length and thigh twitch acceleration. While, in double 
task of serial 100-7 test and naming animals test, DTC 
and gait cycle of mid stance and terminal swing were 
common features associated with MCI. In words recall 
test, only DTC was selected as common feature by the 
two algorithms. Therefore, selection preference could be 
observed in different models, and the combined features 
were further analyzed in each task.

Logistic regression analysis of the selected gait parameters 
associating with MCI
To further delineate the association between the above 
selected important gait features and MCI, an univariate 
logistic model and a multivariate logistic model adjust-
ing gender, age, height, body weight were created, and 
the odds ratio (OR) with 95% confidence interval (CI) 
and testing significance were shown in a forest plot 
in Fig.  3. In the single task, only stride length CV was 
identified as a risk factor for MCI in the adjusted logis-
tic model (OR = 1.083, 95% CI: 1.012–1.060, P = 0.021). 
In serial 100-7 dual task, swing time and terminal swing 
phase were screened as two independent risk factors 
for MCI, with shorter swing period and lower terminal 
swing cycle indicating higher risk of MCI (OR = 0.001, 
95% CI: 0-0.484 and OR = 0.792, 95% CI: 0.665–0.942). 
In dual task of naming animals, in addition to the above 

variables, mid stance phase, stride length CV and swing 
time were also contributing factors indicating MCI. 
When performing a word recall test, DTC, swing time, 
mid stance, and terminal swing independently predicted 
cognitive impairment. Collectively, the logistic regression 
analysis suggested that mid stance, terminal swing, and 
swing time were filtered as common hallmarks of gait 
predicting cognitive decline.

Comparisons of gait parameters between normal aging 
people and cognitively impaired population
Based on the above results, we further traced and com-
pared the changes of these filtered gait parameters in the 
two groups. As shown in the scatter-box plots in Fig. 4, 
stride length CV obviously increased in MCI subjects in 
the condition of single task and naming animals dual task 
test compared with NC group (P = 0.024 for each com-
parison). Although elevated stride length CV was also 
found in MCI under the dual tasks of serial 100-7 and 
words recall, it didn’t reach statistical significance. Mid 
stance and terminal swing phase are two temporal gait 
parameters accounting for approximately 18% and 11% 
of the whole gait cycle for normal adults, respectively. In 
our study, the mean mid stance of NC group was 19.59% 
in performing single task, which was not differed from 
MCI group of 19.73 ± 2.51% (P = 0.066). In the three dual 
tasks, the mean mid stance (%) of MCI group increased 
to 20.46% in serial100-7 test, 20.39% in naming animals 
test and 20.42% in words recall test, which were all sig-
nificantly higher than that in NC group. For the terminal 
swing, the two groups had comparable percentage under 

Fig. 1 Flowchart of participants included for analysis. PSM: propensity score matching
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single task condition; reduced terminal swing was found 
in MCI group than NC group when performing dual 
tasks. Likewise, there was no significant difference in the 
mean swing time between NC and MCI in single task; 
however, MCI group exhibited significantly decreased 
swing time than NC when performing three cognitive 
tasks.

Effects of different dual cognitive tasks on the performance 
of gait test
To elucidate the effect of different cognitive tasks on 
the performance of gait test, we compared the above 

screened gait parameters, velocity and DTC between 
single task and three dual tasks as illustrated in Fig.  5. 
The ANOVA analysis revealed that there was statisti-
cal difference in the stride length CV among the differ-
ent tasks both in NC group and MCI group (F = 8.819, 
P < 0.001 and F = 3.225, P = 0.026), and subjects tended 
to have higher stride length CV when performing the 
dual task gait tests, particularly in finishing the words 
recall test. The percentage of mid stance didn’t differ sig-
nificantly under the four modes of tasks either in NC or 
MCI group. Statistical difference on percentage of termi-
nal swing phase was shown among the four task modes 

Table 1 Baseline characteristics of the overall and matched populations
Characteristics Overall Population Propensity Score-Matched (1:1) 

Population a

NC (n = 126) MCI 
(n = 134)

Pb NC(n = 106) MCI(n = 106) Pb

Age (years) 0.122 0.319
50 ~ 59 55 (43.7) 42(31.3) 44(41.5) 33(31.4)
60 ~ 69 55 (43.7) 70(52.2) 47(44.3) 56(53.3)
70 ~ 79 16 (12.7) 20 (14.9) 15(14.2) 15(14.3)
≥ 80 0 (0.0) 2 (1.5) 0(0.0) 1(1.0)
Female n (%) 89 (70.6) 74 (55.2) 0.010 69(65.1) 65(61.3) 0.669
Height (cm) 163.08 ± 7.33 163.52 ± 8.11 0.647 163.56 ± 7.48 162.86 ± 7.51 0.499
Body weight (kg) 61.46 ± 9.84 65.52 ± 10.83 0.002 63.02 ± 9.95 63.96 ± 10.47 0.502
BMI (kg/m2) 23.16 ± 2.87 24.32 ± 2.97 0.002 23.54 ± 2.86 24.04 ± 3.06 0.210
Education n (%) < 0.001 0.068
< 6 years 12 (9.5) 13 (9.7) 12(11.3) 10(9.4)
6–9 years 25 (19.8) 57 (42.5) 25(23.6) 43(40.6)
9–12 years 53 (42.1) 46(34.3) 50(47.2) 37(34.9)
> 12 years 36 (28.6) 18 (13.4) 19(17.9) 16(15.1)
Martial status (%) 0.442 0.318
Single 0(0.0) 1(0.8) 0(0.0) 1(0.9)
Married 121 (96.0) 122 (91.0) 102(96.2) 95(89.6)
Divorced 1(0.8) 2(1.5) 1(0.9) 2(1.9)
Widowed 4(3.2) 9(6.7) 3(2.8) 8(7.5)
Living alone n (%) 9 (7.1) 15(11.2) 0.259 7(6.6) 14(13.2) 0.167
Exercise n (%) 0.156 0.149
Never 8(6.3) 6(4.5) 6(5.7) 5(4.7)
< 3 times/week 49(38.9) 39(29.1) 43(40.6) 30(28.3)
≥ 3 times/week 69(54.8) 89(66.4) 57(53.8) 71(60.7)
Smoking n (%) 31 (24.6) 48 (35.8) 0.075 31(29.2) 32(30.2) 0.358
Alcohol use n (%) 29 (23) 40 (29.9) 0.326 28(26.4) 27(25.5) 0.809
Hypertension n (%) 46(53.6) 57(42.5) 0.321 44(41.5) 44(41.5) 1.000
Diabetes n (%) 11 (8.7) 20 (14.9) 0.123 9(8.5) 17(16.0) 0.094
Hyperlipemia n (%) 38 (30.2) 41(30.6) 0.939 33(31.3) 31(29.2) 0.881
Coronary arterial disease (%) 20 (15.9) 18(13.4) 0.578 17(16.0) 14(13.2) 0.698
Sleep disorder n (%) 67 (53.2) 65 (48.5) 0.452 59(55.7) 54(50.9) 0.582
Family history n (%) 14 (11.1) 10 (7.5) 0.310 10(9.4) 10(9.4) 1.000
MMSE 28.91 ± 1.17 27.35 ± 1.65 < 0.001 28.90 ± 1.05 27.30 ± 1.64 < 0.001
MoCA 26.72 ± 1.98 21.52 ± 2.35 < 0.001 26.22 ± 2.39 21.01 ± 2.52 < 0.001
Note: a The MCI and NC groups were 1:1 matched using propensity scores with a caliper value of 0.4 based on the covariates of gender, age, height, weight, and 
educational years
bP-value between NC and MCI groups in the overall population or propensity score-matched population was determined using chi-square or Fisher’s exact test for 
categorical variables presented as n (%) or using independent t-test for continuous variables presented as means ± SD.
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Table 2 Important gait characteristics selection associated with cognitive function in matched populations
Tasks Random forest LASSO regression The combined features

Features Importance Features Importance
Single task Stride length CV 0.577 Thigh swing work -0.120 Stride length CV

Stride time CV
Load response
Initial swing
Mid swing
Thigh twitch acceleration
Thigh swing work

Mid swing 0.555 Load response -0.012
Thigh twitch 
acceleration

0.531 Stride length CV 0.010

Stride time CV 0.524 Thigh twitch 
acceleration

0.001

Initial swing 0.511
Subsequent 100-7 Mid stance 0.592 Swing time -0.484 Stance time CV

Swing time
Terminal swing
Mid stance
Thigh swing work
DTC

Thigh swing work 0.547 Terminal swing -0.032
Stance time CV 0.540 Mid stance 0.002
DTC 0.534 DTC 0.002
Terminal swing 0.528

Naming Animals Terminal swing 0.565 Stride length -0.271 Stride length
Stride length CV
Terminal swing
Mid stance
DTC
Stride time CV
Swing time
Swing time CV

Stride time CV 0.533 Swing time -0.225
Swing time CV 0.528 Terminal swing -0.039
DTC 0.526 Mid stance 0.013
Mid stance 0.526 Stride length CV 0.008

DTC 0.003

Words recall Stride time CV 0.568 Swing time -0.117 Velocity
Stride length
Stride time CV
Swing time
DTC
Mid stance
Terminal swing
Thigh swing work
Thigh twitch acceleration

Thigh swing work 0.543 Terminal swing -0.015
Velocity 0.540 Thigh twitch 

acceleration
-0.021

DTC 0.532 DTC 0.002
Stride length 0.522 Mid stance 0.001

Note: CV: coefficient of variation, calculated by dividing the standard variability to mean value. DTC: dual task cost of velocity, calculated as [(velocity of single task-
velocity of dual task)/velocity of single task] × 100%. Top -ranked features associating with MCI were selected using recursive feature elimination (RFE) based random 
forest (randomForest package) and LASSO regression (glmnet package) algorithms of R-version-4.1.2

Fig. 2 Schematic diagram of functional phases of a normal gait cycle and the measured spatiotemporal parameters using a wearable gait measuring 
device (IDEEA 3.0 system)
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in NC group (F = 3.96, P = 0.008) with significantly higher 
values in counting backward by 7 test and enumerat-
ing different animals. Whereas, this difference was not 
shown in MCI group. Besides, participants had higher 
expenditure in swing time when performing the dual 
tasks either in NC or MCI groups (F = 44.11, P < 0.001 and 
F = 18.32, P < 0.001, respectively), with a stepwise increase 
between serial 100-7 and naming animals, especially 
higher in words recall test than the other two dual tasks 
(both P < 0.05). Because velocity was an important hall-
mark parameter of gait, we then evaluated the changes 
of velocity under different tasks. Notably, slower speed 
was monitored in dual tasks in both NC and MCI groups, 
and the mutual comparison following ANOVA suggested 
much lower velocity in words recall test comparing with 
counting backward by 7 test and enumerating different 
animals test (both P < 0.05). Likewise, significantly higher 
DTC on velocity was required when finishing the words 
recall test than that in other task in both NC and MCI 
groups.

Discussion
This study explored the gait performance in normal aging 
people and subjects with cognitive decline in finishing 
single or three different dual task paradigms. In a signifi-
cant confounders balanced population, important vari-
ables associating with MCI were filtered using random 
forest and LASSO models in each task. The commonly 
differed variables between NC and MCI groups were 

temporal gait characteristics including swing time, mid 
stance, and terminal swing as well as spatial characteris-
tic DTC in the dual task modes as further evaluated by 
logistic regression analysis. Compared with single task, 
all subjects walked slower when executing an additional 
cognitive task as reflected by the substantially decreased 
velocity, and this decrease was particularly obvious in 
finishing the words recall task requiring the memory 
capability. Therefore, disturbed temporal gait param-
eters under dual tasks may provide objective evidence 
for the clinical screening of cognitive decline in aging 
population.

In our study, by comparing the demographic data of 
the 260 enrolled participants categorized as NC and 
MCI, we found that participants in MCI group had sig-
nificantly higher body weight as well as BMI, and lower 
educational levels, indicating that obesity and educa-
tional background may associate with cognitive decline. 
Several epidemiological studies reported that people 
with higher BMI had a greater risk for developing MCI 
and AD [29–31]. Obesity was associated with lower 
brain volumes in cognitively normal elderly subjects and 
higher BMI was associated with brain volume deficits 
in both AD and MCI [32]. Educational background is a 
well acknowledged contributor associating with cogni-
tive status. Multiple lines of evidence revealed that higher 
education level served as a protective factor to reduce 
the risk of MCI and AD [33, 34]. Rolstad et al. reported 
that stable MCI patients with higher education had 

Fig. 3 Forest plots of logistic regression models of gait parameters in different task condition associating with MCI. The left panel of forest plot presents 
the unadjusted univariate logistic model using dichotomous NC/MCI as dependent variable and the left panel shows the multivariate logistic model 
predicting MCI after adjusting for age, gender, height, weight, and educational level. OR with 95% CI and P values were estimated using logistic regres-
sion. The square represents the OR value and the connected whiskers show corresponding 95% CI. *P < 0.05 and **P < 0.01 indicate statistically significant 
estimates
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lower concentrations of t-tau as compared to those with 
lower education, and higher education may offer protec-
tion against tauopathy [35]. Therefore, propensity score 
matching method was used to balance these significant 
confounding variables between the two groups. Addi-
tionally, although MCI and NC groups present compara-
ble frequency of sleep disorder in this study, it still exerts 
an adverse influence on individual’s cognitive function. 
A longitudinal population-based cohort study revealed 
that sleep disturbance was associated with worse future 

cognitive performance for the 60-year-olds [36]. A signif-
icant V-shaped association is shown between sleep dura-
tion and MCI/dementia risk in women with either short 
(≤ 6 h/night) or long (≥ 8 h/night) sleep duration involv-
ing higher risk of cognitive impairment [37]. Sleep abnor-
malities can accelerate AD pathophysiology, promoting 
the accumulation of amyloid-β and phosphorylated tau 
[38]. In our study, about half of the participants in NC 
or MCI groups reported sleep disorder with regarding 
to abnormal sleep duration or sleep latency, indicating 

Fig. 4 Scattering box plots of gait parameters in NC and MCI participants under different tasks. The four vertical plots in each column show various gait 
parameters measured under a certain task, while four horizontal plots present a certain gait parameter under four tasks. The jitter dots indicate the abso-
lute gait value of each subject in NC or MCI group. The center line of the box plot indicates the median value and the bounds of box indicate first quartile 
(Q1) and the third quartile (Q3) values in each group. Interquartile range (IQR) refers the difference between Q3 and Q1. The connected whiskers in the 
box plot indicate values within the range of the upper limit (Q3 + 1.5×IQR) and lower limit (Q1-1.5×IQR). The P values were compared between NC and 
MCI groups and analyzed using independent t-test
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that sleep patterns underwent significant modifications 
in micro and macrostructure along with aging. There-
fore, sleep problems should be noticed and individual-
ized interventions targeting sleep disturbances in elderly 
people should be recommended to prevent or deceler-
ate conversion to dementia. Besides, further studies are 
needed to expand our understanding on the contribution 
of sleep disorder to cognitive decline and the associated 
behavior, such as walking and gait characteristics.

Accumulating studies supported that walking is a 
complicated activity involving both motor and cognitive 
functions and their interplay or coordination rather than 
an automatic process [15]. Based on this rational, gait 
characteristics of patients with cognitive decline have 
been discussed in several previous studies [16, 39, 40]. 
A meta-analysis summarizing the effect of MCI on gait 
involving 11 studies concluded that MCI affected spe-
cific gait parameters, and these changes were particularly 
pronounced when subjects were challenged cognitively 
[18]. In these retrieved studies, four criteria were used 
for the diagnosis of MCI and three modalities of instru-
ments were used to measure the gait function, includ-
ing electronic walkways, force plates and body-worn 

sensors. Items of gait parameter varied substantially 
across the included studies even when the same instru-
ment was used, and only routine spatial gait parameters 
were reported. Therefore, more studies are needed due to 
insufficient evidence of these heterogeneous studies. In 
the past decades, wearable sensors were prevalent in gait 
analysis and proved to be useful as they permitted a sim-
ple, objective assessment of human gait [41]. In our study, 
a wearable sensor was used and about 30 items of gait 
characteristics were captured. This portable device could 
collect spatial-temporal and kinetic gait features. These 
measured features were pooled into algorithms and spa-
tial-temporal features were selected for their association 
with MCI, indicating their sensitivity in detecting cogni-
tive decline.

We evaluated the gait performance of normal aging 
people and patients with MCI in single task and three dif-
ferent dual tasks challenging cognitive capabilities. It was 
found that participants with MCI exhibited significantly 
higher variability of stride length in single task than the 
normal controls, suggesting the disturbed gait regular-
ity in these subjects. This gait disturbance also can be 
reflected under dual task condition when performing 

Fig. 5 Comparisons of gait performance under single task and three different dual tasks. Six gait parameters in performing the four tasks were sepa-
rately compared in NC (left view) or MCI (right view) groups. The jitter dots indicate the absolute gait value of each subject in NC or MCI group. The box 
plot show the Q1, median, and Q3 values in each group. The connected whiskers in the box plot indicate the upper limit and lower limit. The gray lines 
connecting two dots trace the changes of each participant’s gait parameter under various tasks. Difference among multiple tasks were compared using 
ANOVA followed by Bonferroni post-hoc test
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naming animals test. The greater variability of stride 
length in MCI were also reported in other studies [42, 
43]. Moreover, our study identified that in dual task 
mode, temporal gait parameters swing time, in paralleled 
with the percent of terminal swing phase in a gait cycle 
greatly reduced in cognitively impaired individuals com-
pared to normal aging people. A gait cycle is defined as 
the period from the initial contact of one foot to the fol-
lowing occurrence of the same event with the same foot. 
Currently, the gait cycle could be partitioned at different 
granularity based on the measuring methods of events 
and temporal phases. With the advancement of measur-
ing techniques, wearable sensors emerge as the most 
promising device for extraction and analysis of larger 
number of features of gait, which enable the gait segment 
into more sub-phases (ranging from 2 to 8 sub-phases) 
[10]. Nowadays, the widely used wearable sensors for gait 
phase recognition include linear accelerometer, gyro-
scope, force-based measurements, electromyographic 
sensors, inertial measurement units, and joint angular 
sensors. It is concluded that analysis of the acceleration 
allowed researchers to recognize a greater granularity 
of gait cycles, such as the sub-phases of the swing phase 
[44]. In our study, IDEEA system carrying five acceler-
ometers were used to monitor body and limb motions 
constantly. These motion signals are first preprocessed 
by signal conditioners and then output as electric signals 
representing motion and speed. Afterwards, the electric 
signals fed to the microprocessor data acquisition unit at 
high rate through a cable. Thus, the motion signals were 
transformed to time-serial waveform curves showing 
amplitude of relative position and acceleration informa-
tion of the subject’s gait. Currently, numerous valuable 
methods are used for gait phase partitioning based on the 
waveform curves. Basically, threshold method, time-fre-
quency analysis, and peak heuristic algorithms are used 
for event and phase detection. While, machine learning 
based approaches, containing various algorithms such 
as Hidden Markov models, Deep Learning Neural Net-
work, and so on, are becoming mainstay techniques. 
Different computation methodologies provide differ-
ent performances regarding the parameters such as the 
number of detectable phases, events, and detection 
delay [5]. Taborri et al. summarized that both threshold-
based methods and machine-learning approaches could 
obtain satisfactory performance in gait phase detection 
and permit the sub-partitioning of the swing phase [44]. 
In IDEEA system, wavelet-based algorithm and Bayes-
ian analysis are used to analyze the trajectory and rec-
ognize the phases of gait. The different combinations of 
signals from those five sensors represent different physi-
cal activities. Thus, the sensors and algorithms applied 
in this study allow to segment the gait cycle into eight 
sub-phases, particularly for the swing phase partitioning 

[44]. Swing time refers to the duration between the Toe-
Off and the Heel-Strike of one leg inside a gait cycle, 
which takes 0.36 ~ 0.40  s and accounts for approximate 
40% of this cycle. During this phase, the leg first pushes 
backwards and then swings forwards, transforming the 
potential energy into kinetic energy, and resulting in the 
highest values in the acceleration and angular velocity 
signal to propel the forward motion of the whole body 
[10]. The actual swing is divided into three phases: initial, 
mid and terminal swing phase at approximately 60–75%, 
75–85% and 85–100% of the gait cycle, respectively. The 
terminal swing phase, the ending of swing phase and the 
entire gait cycle, is responsible for decelerating forward 
motion of the lower limbs and preparing for foot land-
ing for the next gait cycle. The decreased swing time and 
terminal swing in MCI may indicate an impaired capacity 
for moving forwards when conducting a cognitive task. 
Meanwhile, we found that MCI patients showed elevated 
mid stance than the control. The mid stance is the only 
phase of a single support for whole gravity, which func-
tions to maintain the stability of the knee joint and con-
trol the forward inertial motion of the limb. Therefore, 
the participants with MCI may experience insufficient 
walking stability and posture control when performing a 
dual task that needed being compensated by prolonged 
mid stance. Conventionally, gait velocity, cadence and 
stride length were frequently focused in MCI patients in 
previous studies, while the detailed temporal character-
istics were rarely portrayed [45]. Thus, a comprehensive 
understanding of specific gait pattern in MCI population 
is needed since gait is a complex integrated activity and 
slow speed is a nonspecific variable linking with many 
subjective and objective factors [46]. We did not observe 
substantial difference in gait speed between MCI and 
control under single and dual tasks in spite adjusting the 
covariates of age, sex and height or weight. The previous 
study tended to believe that patients with MCI exhib-
ited slower speed under single or dual task conditions 
although controversy existed in other studies showing no 
difference between them [47–49]. It can be explained that 
our study recruited subjects aging over 50 years with 85% 
of them ranging from 50 to 70, which may differ from 
other studies in age distribution. Meanwhile, no priority 
was permitted to perform motor or cognitive tasks, thus, 
the attention capacity and preference in allocating these 
resources between the two tasks may also affect the per-
formance in gait speed.

In our study, three different dual cognitive tasks com-
passing subsequent 100-7, naming animals and words 
recall were loaded onto the gait assessment, and their 
impacts on gait performance of the participants were 
evaluated. Overall, all subjects exhibited significantly 
slower speed when conducting an additional cognitive 
task comparing with performing a single task, which 
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was well acknowledged in other studies [45]. Meantime, 
we noticed that subjects had poorer gait performance 
in words recall test, as reflected by the more obvious 
decrease in velocity and higher velocity cost compar-
ing with the other two tests. The arithmetic tasks (sub-
sequent subtraction by 7s from 100) and verbal fluency 
tasks (enumerating animal names) seemed to have com-
parable effects on gait function. The three dual tasks 
challenged different cognitive resources. Serial 100-7 is a 
mental tracing task engaging numerical processing skills; 
verbal fluency tasks involving semantic knowledge and 
retrieval processes, while words recall activities engaging 
episodic memory encoding and retrieval processes. Acti-
vation of neural circuit in bilateral prefrontal cortices are 
implicated in all these tasks [50]. Related studies showed 
that verbal fluency tasks resulted in similar magnitude 
of interference as mental tracking tasks when walking 
[51]. In our study, words recall trial caused higher burden 
and disturbance on gait, indicating that this task is more 
complex and high-demanding, which is consistent with 
the high frequency of memory impairment in MCI. As 
depicted by Schwenk et al., more complex cognitive tasks 
seem to be required to elicit the gait speed differences 
between healthy from cognitively declined subjects [46].

Conclusions
Our study demonstrated dual task gait measurement 
is superior than the single task in discriminating cogni-
tively decline people from normal aging population. In 
dual task condition, all subjects walked slower than that 
in single task mode, and the decrease of velocity were 
particularly obvious in completing the words recall task 
that competes the memory capability when walking. 
Commonly, participants with MCI exhibited decreased 
swing time and terminal swing phase, as well as increased 
mid stance and variability of stride length comparing 
with normal aging participants when performing the 
dual tasks, indicating the insufficient walking stability 
and posture control in these patients. This study is lim-
ited for its cross-sectional nature and a dynamic follow-
up is advocated. Besides, multicenter study involving 
more participants should be performed to validate the 
conclusion.
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