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Abstract
Background  Mitochondrial dysfunction in kidney cells has been implicated in the pathogenesis of chronic kidney 
disease (CKD). Estimation of mitochondrial DNA copy number (mtDNA-CN) is considered a convenient method for 
representing mitochondrial function in large samples. However, no study has investigated the association between 
mtDNA-CN and CKD in older adults with the highest prevalence. The objective is to examine cross-sectional and 
prospective associations between mtDNA-CN values and CKD risk in older adults to determine whether mtDNA-CN 
represents a novel potential biomarker for the recognition of CKD risk.

Patients and methods  In a Chinese community-based cohort of over 65-year-olds, we included 14,467 participants 
(52.6% females). CKD was defined by eGFR < 60 mL/min/1.73 m2 or ICD-10 codes (patients = 3831 (26.5%)). 
Participants had peripheral blood levels of mtDNA-CN calculated from probe intensities of the Axiom CAS Array.

Results  The risk of CKD prevalence decreased with mtDNA-CN per 1-SD increment, independent of established 
risk factors for older CKD (odds ratio [OR] per SD 0.90, 95% confidence interval [CI] 0.86, 0.93, P < 0.001), and has 
comparable strength of association with these established risk factors. Furthermore, the progression of kidney 
function was stratified according to the worsening of eGFR categories. The risk of kidney function progression to a 
more severe stage gradually decreased as the mtDNA-CN increased (P trend < 0.001). Non-CKD participants in the 
highest quartile of mtDNA-CN had a lower risk of developing CKD compared to the lowest quartile within 2 years of 
follow-up, reducing the risk of CKD by 36% (95% CI 0.42, 0.97; P = 0.037).

Conclusions  Based on the analysis of the largest sample to date investigating the association between mtDNA-CN 
and CKD in older adults, higher levels of mtDNA-CN were found to be associated with a lower risk of CKD, suggesting 
that a reduced level of mtDNA-CN is a potential risk factor for CKD.
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Introduction
Chronic kidney disease (CKD) is a progressive disease 
with no cure and high morbidity and mortality [1]. The 
prevalence of CKD is increasing rapidly due to rising risk 
factors such as diabetes, hypertension, unhealthy diet, 
inappropriate physical activity and metabolic syndrome, 
with older adults being at a higher risk [2]. However, the 
pathogenic mechanism is unclear and there are no obvi-
ous clinical symptoms until severe damage has occurred 
[3]. Therefore, the identification of reliable biomarkers 
is of utmost importance for early detection and prompt 
public health interventions that can help delay the pro-
gression of CKD [4].

Mitochondria are essential to proper kidney function 
since the kidneys are highly energy-demanding organs 
with abundant mitochondria [5]. Mitochondrial mor-
phological changes and dysfunction are common features 
of kidney cells in both animal models and patients with 
CKD [6, 7]. However, the clinical impact of mitochon-
drial dysfunction in patients with CKD is poorly under-
stood mainly due to the challenges in convenient and 
accurate evaluation of mitochondrial dysfunction [8].

Mitochondria has its own circular genome, with up 
to thousands of copies in each cell called mitochon-
drial DNA copy number (mtDNA-CN) [9]. Recently, 
mtDNA-CN has been proposed as indicative of mito-
chondrial function [10]. MtDNA-CN reflects the energy 
demand of a cell, and has a significant phenotypic impact 
by altering gene dosage [11]. Importantly, detection of 
mtDNA-CN in thousands of populations is getting easy 
and convenient with the advance in genomic technolo-
gies [12]. Moreover, there was previous research reported 
the mtDNA-CN measured in whole blood was signifi-
cantly associated with global gene expression in 30 tis-
sues, include kidney tissue, suggesting that blood-derived 
mtDNA-CN can reflect metabolic health across multiple 
tissues [13].

To date, observational studies have shown that a higher 
mtDNA-CN was associated with a lower prevalence of 
microalbuminuria which is an early sign of CKD [14]. 
Higher mtDNA-CN levels have also been associated with 
a lower risk of CKD incidence [15]. Furthermore, in a 
population of patients with CKD, higher mtDNA-CN has 
been linked to a lower risk of CKD progression, adverse 
clinical outcomes, and all-cause mortality [16–18]. How-
ever, these studies have primarily focused on middle-aged 
adults, and there is currently a lack of research explor-
ing the relationship between mtDNA-CN and CKD risk 
in older adults. Given that older adults have the highest 
prevalence of CKD and undergo age-related physiologi-
cal changes that can lead to a gradual decline in kidney 
function and an increased likelihood of comorbidities, 
older adults require more attention.

In this study we utilized health care and genomic 
data from a large population cohort of Chinese older 
adults. By estimating mtDNA-CN from peripheral blood 
samples, we first investigated the association between 
mtDNA-CN and CKD prevalence, and then examined its 
association with the progression of kidney function, as 
well as incident CKD.

Materials and methods
Study design and participants
This study was based on a large population cohort from 
the Kunshan county, Jiangsu Province, China, between 
May 2019 and August 2021, while they took the annual 
health examinations which were offered free to the local 
older adults. The residual blood samples from their 
health examinations were stored in a sample repository 
at -80 degrees Celsius. The DNA was extracted from the 
blood samples within the same year of sample collection 
for genotyping based on the CAS SNP array chip. The 
detailed procedure has been reported by our research 
group in a previous study [19].

Our inclusion criteria for participants are qualified 
mtDNA-CN detection, no kidney cancer, and having 
eGFR information. Finally, this study included 14,467 
participants aged over 65 with health examination infor-
mation obtained at the same time as DNA blood samples 
testing, for the cross-sectional study of mtDNA-CN and 
CKD prevalence. Of these participants, 7,500 did not 
have CKD and underwent their next health examination 
within the following 2 years, resulting for the prospec-
tive study of mtDNA-CN and incident CKD. Details of 
the protocol for the current study was approved by the 
institutional review board of the First People’s Hospi-
tal of Kunshan (IEC-C-007-A07-V3.0). The study was 
performed according to the guidelines of the Helsinki 
Declaration.

Definition of diseases
1). CKD and kidney function progression: CKD was 
defined according to the Kidney Disease Improving 
Global Outcomes (KDIGO) [20] and eGFR was calcu-
lated using the Chronic Kidney Disease Epidemiology 
Collaboration (CKD-EPI) formula [21]. A diagnosis of 
CKD was defined either estimated glomerular filtra-
tion rate (eGFR) was < 60 mL/min/1.73 m2 or based on 
diagnosis record data using International Classification 
of Diseases-tenth version (ICD-10), as shown in Table 
S1 [22]. Kidney function progression defined by worsen-
ing of eGFR categories according to KDIGO guidelines: 
stage 1 (eGFR ≥ 90) stage 2 (eGFR 60–89), stage 3a (eGFR 
45–59), stage 3b (eGFR 30–44), stage 4 (eGFR 15–29) 
and stage 5 (eGFR < 15), with stage 5 representing the 
most severe form.
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2). Comorbidities and clinical covariates: Diagnoses 
of comorbidities (diabetes, hypertension, cardiovascular 
and cerebrovascular diseases) were obtained from health 
care data using ICD-10. Metabolic syndrome was defined 
based on five physical examination indicators, with a 
positive diagnosis requiring at least three of the five com-
ponents [23].

Measurement of mtDNA copy number
MtDNA-CN was estimated using the pipeline proposed 
based on CAS SNP Array, which was previously reported 
by this research group [19]. In brief, the mtDNA-CN 
was estimated by the intensity of fluorescent signal of 
mitochondrial markers indicating the copy number 
segments of mitochondrial DNA captured by the cor-
responding probes. The intensity of fluorescent signal 
were calculated by Log R Ratio (LRR) and adjusted for 
genomic waves according to GC content by PennCNV 
[12]. The final mtDNA-CN estimates were extracted 
from the mitochondrial LRR adjusted for autosomal LRR 
by Principal component analysis (PCA). The method of 
mtDNA-CN estimation was established and validated 
in previous study [19]. For the strength of association 
between mtDNA-CN estimated from SNP array and 
WGS, our correlation coefficient of 0.52 is comparable 
to the previous studies 0.33 ~ 0.72 [24, 25]. Furthermore, 
we applied a linear regression model to control for the 
potential confounding effects of age, sex, white blood 
cell counts, platelet counts, blood collection date, and 
batch variability. This enabled us to obtain standardized 
mtDNA-CN estimates, which were used for subsequent 
association analysis.

Statistical analyses
Clinical characteristics were presented as mean (SD), 
median (IQR) and number (%) for continuous, abnormal 
and categorical variables respectively. ANOVA, Wilcoxon 
and chi-square tests were applied to evaluate differences 
between phenotypic variables in CKD/non-CKD group. 
Spearman correlation testing was applied to evalu-
ate the correlation between phenotypic variables and 
mtDNA-CN. We investigated the association between 
mtDNA-CN and the risk of CKD prevalence using mul-
tivariate logistic regression, adjusting all statistically sig-
nificant relevant phenotypes for age, sex, waist, systolic 
blood pressure, diastolic blood pressure, serum glutamic 
pyruvic transaminase, serum glutamic-oxaloacetic trans-
aminase, total cholesterol, triglyceride, high-density 
lipoprotein cholesterol, low-density lipoprotein, fasting 
glucose and comorbidities. Then, we utilized Restricted 
cubic spline analysis in logistic regression model was used 
to derive the shape of relationship between mtDNA-CN 
and the risk of CKD prevalence. This analysis was con-
ducted using the R programming package: smoothHR, 

survival, rms. The model had nodes at the 5th, 35th, 65th, 
and 95th percentiles of the distribution of mtDNA-CN. 
Sensitivity analyses were conducted for two diagnosed 
sources of CKD (CKD from ICD-10 or health examined 
kidney function of eGFR < 60 mL/min/1.73 m2). We also 
performed sensitivity analyses to explore the association 
of mtDNA-CN with CKD in different comorbidities. We 
used the same covariates in the cross-sectional analysis 
and in the prospective analysis.

Multinomial logistic regression was applied to analy-
sis the association between mtDNA-CN and six stages 
of kidney function progression. Additionally, mtDNA-
CN was categorized into quartiles among 7,500 non-
CKD participants, and Cox proportional hazards models 
were used to estimate hazard ratios for the associations 
of mtDNA-CN quartiles with CKD incidence. Follow-
up time was used as the time scale, with censoring at 
the time of loss to follow-up or end of follow-up period 
(August 2021). Statistical analyses were performed using 
R version 4.1, with significance defined as P < 0.05.

Results
Sample characteristics
Among the 14,467 participants included in the study, 
the mean age was 71.6 (5.7) years, 52.6% were women, 
26.5% had CKD (Table  1). Compared with non-CKD 
participants, those with CKD had significantly lower 
mtDNA-CN (P < 0.001). Further, CKD patients in addi-
tion to having worse kidney function were found to be 
older, higher rates of women, higher SBP, TG, and SGOT, 
as well as higher prevalence of comorbidities. Conversely, 
CKD patients had lower levels of DBP and SGPT. It is 
noteworthy that the established risk factors of CKD not 
only exhibited significant difference between CKD and 
non-CKD groups in the participants, but also showed a 
strong correlation with mtDNA-CN (most Spearman’s 
P < 0.001).

Association of mtDNA-CN with CKD prevalence
To determine the association between mtDNA-CN and 
CKD, we considered all phenotypes that could potentially 
confound the correlation. Logistic regression analysis 
showed that for each SD increment in mtDNA-CN, there 
was a 10% reduction in the risk of CKD prevalence (OR 
per SD 0.90, 95% CI 0.87, 0.93; P < 0.001, Table S2). The 
strength of this association was comparable to that of 
established risk factors such as fasting glucose, DBP and 
TG. After adjusting for all established risk factors, the 
Restricted cubic spline showed a significant linear dose-
response association between mtDNA-CN and CKD 
prevalence (P overall < 0.001, P non-linear = 0.17, Fig.  1), 
suggesting that the odds of prevalence CKD decreased 
with mtDNA-CN.
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Then, we conducted an analysis to investigate the 
association between mtDNA-CN and CKD in different 
comorbidity subgroups. Results were similar to those 
observed in the overall study population, we did not 
observe any interaction of comorbidities on the associa-
tion between mtDNA-CN and CKD (Table S3). Further-
more, we performed pre-specified subgroup analyses by 
two sources of CKD diagnose, and tested subgroups of 
CKD for correlation with mtDNA-CN. Both subgroups 
observed a similar magnitude of association as with total 
participants (CKDICD: OR per SD 0.88, 95% CI 0.81, 0.96; 
CKDeGFR: OR per SD 0.90, 95% CI 0.86, 0.94) (Table S4). 
This indicates that the correlation is not affected by the 
definition of CKD from different sources.

Association of mtDNA-CN with kidney function 
progression
Kidney function progression was divided into six stages 
based on worsening of eGFR categories. We applied 

multinomial logistic regression models analysis between 
mtDNA-CN and each of the stage, the results showed the 
progress risk for kidney function to next stage was sig-
nificantly decreased as mtDNA-CN per 1-SD increment 
(Table 2). Additionally, after adjusting for established risk 
factors, the higher mtDNA-CN was found to be signifi-
cantly associated with a decrease risk of kidney function 
progression, which is consistent with the results of the 
univariate analysis (each stage versus stage 1, P < 0.01). Of 
note, the odds ratio decreases gradually with the increase 
of the mtDNA-CN, gradually reducing the severely risk 
of kidney function progression (P for trend < 0.001).

Association of mtDNA-CN with CKD incidence
During a median follow-up of 463 days in 7,500 partici-
pants without CKD, a total of 230 (3.1%) incident CKD 
cases were observed (Table S5). Cox regression analy-
sis showed that mtDNA-CN was significantly associ-
ated with CKD incidence (HR per SD 0.85, 95% CI 0.72, 

Table 1  Analysis the baseline phenotypic variables difference in CKD/non-CKD and correlations with mtDNA-CN
Characteristics Non-CKD CKD P value mtDNA-CN†

Spearman’s P 
value

N = 10,636  N = 3,831

mtDNA-CN* 0.03 (1.00) -0.08 (1.01) < 0.001 —

Demographic
Age (years) 69.0 [67.0, 73.0] 74.0 [70.0, 79.0] < 0.001 0.99‡

Sex = female (%) 5332 (50.1) 2279 (59.5) < 0.001 0.95‡

BMI (kg/m2) 24.2 [22.2, 26.4] 24.4 [22.4, 26.5] 0.001 0.29

Waist (cm) 86.0 [80.0, 92.0] 86.0 [80.0, 91.0] 0.81 0.002

Laboratory
SBP (mmHg) 140.0 [129.0, 154.0] 142.0 [130.0, 155.0] 0.004 < 0.001

DBP (mmHg) 79.0 [72.0, 87.0] 78.0 [71.0, 85.0] < 0.001 0.19

SGPT (U/L) 17.0 [13.0, 23.0] 17.0 [13.0, 23.0] 0.026 0.83

SGOT (U/L) 21.0 [18.0, 25.0] 22.0 [19.0, 27.0] < 0.001 < 0.001

TC (mmol/L) 4.7 [4.1, 5.4] 4.8 [4.1, 5.5] 0.19 < 0.001

TG (mmol/L) 1.3 [1.0, 1.9] 1.4 [1.1, 2.0] < 0.001 0.007

HDL-C (mmol/L) 1.3 [1.1, 1.5] 1.3 [1.1, 1.5] 0.024 < 0.001

LDL-C (mmol/L) 2.7 [2.2, 3.2] 2.7 [2.2, 3.3] 0.94 < 0.001

Fasting glucose (mmol/L) 5.4 [4.9, 6.2] 5.6 [5.1, 6.4] < 0.001 < 0.001

Creatinine (µmol/L) 70.0 [61.0, 79.8] 87.0 [73.6, 106.0] < 0.001 < 0.001

eGFR (mL/min/1.73 m2) 85.9 [76.8, 91.1] 61.8 [52.4, 75.1] < 0.001 < 0.001

BUN (mmol/L) 5.5 [4.7, 6.5] 6.3 [5.2, 7.6] < 0.001 0.016

Uric acid (µmol/L) 307.6 [257.0, 363.3] 349.1 [285.9, 422.2] < 0.001 < 0.001

Comorbidities
Diabetes = 1 (%) 2,149 (20.2) 1,023 (26.7) < 0.001 < 0.001

Hypertension = 1 (%) 7,319 (68.8) 3,233 (84.4) < 0.001 < 0.001

Metabolic syndrome = 1 (%) 2,219 (20.9) 902 (23.5) 0.001 < 0.001

CCVD = 1 (%) 578 (5.4) 447 (11.7) < 0.001 0.004
BMI: body mass index; SBP: systolic blood pressure; DBP: diastolic blood pressure; eGFR: estimated glomerular filtration rate; SGPT: serum glutamic pyruvic 
transaminase; SGOT: serum glutamic-oxaloacetic transaminase; TC, total cholesterol; TG, triglyceride; HDL-C: high-density lipoprotein cholesterol; LDL-C: low-
density lipoprotein; BUN: blood urea nitrogen; CCVD: Cardiovascular and cerebrovascular disease

Data presented as median and interquartile range or number (%), unless otherwise indicated
* Mean and standard deviation
† Spearman correlation testing of mtDNA-CN versus phenotypic variables
‡P value was not significant as mtDNA-CN was adjusted for age, sex
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0.99; P = 0.038) (Table  3). However, this association was 
not significant after adjusting for established risk fac-
tors in the multivariate model (HR per SD 0.88, 95% CI 
0.75, 1.03; P = 0.10). We further categorized mtDNA-CN 
into four quartiles based on the sample distribution and 
analyzed the associations of CKD incidence with differ-
ent quartiles of mtDNA-CN. Participants in the highest 
mtDNA-CN quartile had a statistically significant lower 

risk of CKD incidence compared to those in the lowest 
quartile (P for trend = 0.12). The multivariable-adjusted 
results were consistent, showing a 36% reduction in the 
risk of CKD incidence (95% CI 0.42, 0.97, P = 0.037) in the 
highest quartile of mtDNA-CN.

Discussion
In this large community-based cohort of Chinese old 
adults, we found that higher mtDNA-CN was associ-
ated with lower risk of CKD. The risk of kidney function 
progression significantly decreased as the mtDNA-CN 
increased, and the non-CKD participants with higher 
mtDNA-CN had a lower risk of developing CKD. These 
association between mtDNA-CN and CKD risk remained 
after adjusting for established risk factors, suggesting that 
lower mtDNA-CN may be an independent risk factor for 
CKD.

This study extends previous work on this topic in 
several ways. First, we considered various risk factors 
associated with CKD in older adults that may affect the 
correlation between mtDNA-CN and CKD. We found 
significant correlations between mtDNA-CN and age, 
and we adjusted for the effects of aging by controlling 
for age. And we controlled for the influence of inflamma-
tion on mtDNA-CN by considering the presence of white 
blood cells. The older adults always suffer from chronic 

Table 2  Association of mtDNA-CN with kidney function 
progression
Kidney 
function

Number Odds ratio (95% CI) P 
value

P for 
trendUnivariable Multivari-

able
stage1 3488 reference reference — < 0.001

stage2 9200 0.96 
(0.92,0.99)

0.94 
(0.90,0.98)

0.0028

stage3a 1299 0.87 
(0.82,0.93)

0.84 
(0.78,0.90)

< 0.001

stage3b 367 0.70 
(0.63,0.79)

0.66 
(0.59,0.75)

< 0.001

stage4 88 0.75 
(0.61,0.94)

0.72 
(0.58,0.91)

0.0051

stage5 25 0.55 
(0.40,0.77)

0.56 
(0.39,0.79)

0.0013

Multivariable model adjusted age, sex, BMI, waist, SBP, DBP, SGOT, SGPT, TC, TG, 
HDL-C, LDL-C, fasting glucose, diabetes, hypertension, metabolic syndrome, 
CCVD

Fig. 1  Association between mtDNA-CN and CKD prevalence based on restricted cubic spline function in the multivariate logistic regression model. The 
red line represented the adjusted OR corresponding to the different values of mtDNA-CN. The red dotted lines represented the 95%CI of the OR. The red 
closed circle, the reference value was set at the median − 0.041 for mtDNA-CN. The gray density histogram represented the frequency distribution of 
mtDNA-CN. The association of mtDNA-CN with prevalent CKD was significant (P value for correlation, < 0.001), the association was approximately linear 
(P value for nonlinear spline terms, > 0.05)
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diseases at the same time [26]. These diseases are impor-
tant cause of CKD and may exacerbate the progression of 
CKD [27]. After controlling for these diseases, the asso-
ciation remained robust.

Second, there have been reports of lower mtDNA-
CN being associate with higher risk of diabetes, meta-
bolic syndrome and cardiovascular disease [27, 28]. Our 
subgroup analysis findings suggest that the association 
between mtDNA-CN and CKD is not influenced by the 
presence of diabetes. However, in contrast to our results, 
the He, et al. [16] found that this association was only 
present in patients with diabetes, and not in those with-
out diabetes. Such differences could be related to dif-
ferences in the populations, including variations in age, 
higher prevalence rates of diabetes and obesity compared 
to our study. Importantly, diabetes is not the primary 
cause of morbidity among older adults in the Chinese 
population [29]. These characteristics may affect the con-
sistency of the results, as recently discussed by Kronen-
berg F, et al. [30].

Third, the association of mtDNA-CN with CKD 
was found to be comparable to that of established risk 
factors which change per 1-SD in our study, such as 
fasting glucose, diastolic blood pressure (DBP) and 
triglyceride (TG). This suggests a strong association 
between mtDNA-CN and CKD risk, emphasizing the 
importance of monitoring changes in mtDNA-CN. 
Fourth, we found that a higher mtDNA-CN was signifi-
cantly associated with a reduced risk of kidney function 
declining to a worse stage, and the participants in higher 
mtDNA-CN had a lower risk of developing CKD. These 
findings suggest that mtDNA-CN could potentially serve 
as a useful biomarker for identifying CKD progression 
and severity, as well as a potential predictor for the devel-
opment of CKD.

Potential mechanism
The kidneys play a critical role in maintaining fluid bal-
ance, eliminating waste, and metabolite regulation, all 
of which require an ample supply of energy from mito-
chondria to sustain normal cellular metabolism and 

function [31]. As a very energy-hungry organ, many kid-
ney cells particularly sensitive to mitochondrial dysfunc-
tion [32]. The entire protein-coding capacity of mtDNA 
is devoted to the synthesis of 13 essential subunits of the 
complexes of the respiratory apparatus [33]. Gene defi-
ciencies lead to a cellular energy deficit, compromising 
kidney function [34]. By comparing CKD patients with 
healthy people, it has been found that CKD patients 
have an impaired mitochondrial respiratory system [6]. 
Moreover, the mitochondrial respiratory chain is a major 
source of reactive oxidative species (ROS) as byproducts 
of normal cell respiration. The respiratory chain function 
is impaired and thereby increase the electron leak in the 
respiratory chain and ROS production [27]. There is now 
an increasing body of evidence to suggest that the gen-
eration of ROS is significantly increased in kidney disease 
[35]. Further, the lack of proper mitochondrial integrity 
results in escape of its DNA content in cytosol, where it 
is recognized as “foreign” DNA. This recognition inap-
propriately activates the immune system, triggering path-
ological inflammation. The latest research published by 
Chung, et al. [36] confirmed this mechanism which lead 
to renal inflammation and fibrosis.

These large number of experimental studies clearly 
supports the findings of the serious renal pathology 
caused by the alteration of mtDNA-CN. Although there 
is unclear whether the causal relationship between 
mtDNA-CN and CKD [25]. In conjunction with obser-
vational associations with CKD adverse clinical out-
comes and our ample evidence supporting a link between 
mitochondrial function and kidney disease progression 
in older, suggest that mtDNA-CN is a key factor in the 
early detection of CKD, and to monitor those expressing 
low mtDNA-CN with increased vigilance [37]. More-
over, mitochondria are closely related to healthy aging 
and longevity [38]. Recent studies have indicated that 
dietary supplements and exercise can enhance mito-
chondrial health by modifying mitochondrial function 
[39, 40]. Therefore, CKD patients, especially those with 
comorbidities, can improve mitochondrial function and 

Table 3  Hazard ratios for CKD incidence by levels of mtDNA-CN
mtDNA-CN Events/n Incidence

Rate per 1000 Person-Yr
Hazard Ratio (95% CI) P value
Univariable Multivariable

mtDNA-CNa 230/7500 15.3 0.85 (0.72, 0.99) 0.88 (0.75, 1.03) 0.10

quartile1†(lowest) 59/1875 15.7 reference reference —

quartile2† 64/1875 17.1 1.09 (0.77, 1.56) 1.04 (0.73, 1.49) 0.82

quartile3† 71/1875 18.9 1.21 (0.85, 1.70) 1.18 (0.84, 1.67) 0.35

quartile4†(highest) 36/1875 9.6 0.60 (0.40, 0.91) 0.64 (0.42, 0.97) 0.037

P for trend 0.12
* mtDNA-CN was continuous variable
† mtDNA-CN was divided into four groups based on its quartile distributions in 7500 non-CKD participants

Multivariable model adjusted age, sex, BMI, waist, SBP, DBP, SGOT, SGPT, TC, TG, HDL-C, LDL-C, fasting glucose, diabetes, hypertension, metabolic syndrome, CCVD
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disease management through lifestyle interventions such 
as adjusting corresponding dietary and exercise.

Strengths and limitations
The present study had several strengths. On the one 
hand, it is one of the largest studies of mtDNA-CN and 
CKD in older adults, to ensure adequate statistical power 
to enable reliable evaluation. The population comes from 
the same region, living environment and other exter-
nal factors rather homogeneous. On the other hand, the 
results were verified after testing for a variety of con-
founding factors that may influence CKD and mtDNA-
CN in older adults. Therefore, we support the use of 
mtDNA-CN measurement in the whole blood as an easy-
to-use biomarker for the risk stratification of older adults 
with CKD. The limitation of the present study is only 
had 2 years follow-up. Although there was a significant 
reduction in CKD incidence among individuals in the 
highest mtDNA-CN quartile, it is difficult to determine 
its predictive capacity.

Conclusions
In conclusion, this study demonstrated that higher 
mtDNA-CN in peripheral blood is significantly associ-
ated with lower risk of CKD in older adults, independent 
of established CKD risk factors. This study in older adults 
adds to the growing body of evidence that mtDNA-CN 
plays an important role in kidney function.
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