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Abstract 

Background The characterization and research around the gut microbiome in older people emphasize microbial 
populations change considerably by losing the diversity of species. Then, this review aims to determine if there is any 
effect on the gut microbiota of adults older than 65 that starts an exercise intervention or improves physical activity 
level. Also, this review describes the changes in composition, diversity, and function of the gut microbiota of older 
subjects that had improved their physical activity level.

Methods The type of studies included in this review were studies describing human gut microbiota responses to any 
exercise stimulus; cross-sectional studies focused on comparing gut microbiota in older adults with different physical 
activity levels—from athletes to inactive individuals; studies containing older people (women and men), and studies 
written in English. This review’s primary outcomes of interest were gut microbiota abundance and diversity.

Results Twelve cross-sectional studies and three randomized controlled trials were examined. Independently of the 
type of study, diversity metrics from Alpha and Beta diversity remained without changes in almost all the studies. Like-
wise, cross-sectional studies do not reflect significant changes in gut microbiota diversity; no significant differences 
were detected among diverse groups in the relative abundances of the major phyla or alpha diversity measures. Oth-
erwise, relative abundance analysis showed a significant change in older adults who conducted an exercise program 
for five weeks or more at the genus level.

Conclusions Here, we did not identify significant shifts in diversity metrics; only one study reported a significant 
difference in Alpha diversity from overweight people with higher physical activity levels. The abundance of some 
bacteria is higher in aged people, after an exercise program, or in comparison with control groups, especially at the 
genus and species levels. There needs to be more information related to function and metabolic pathways that can 
be crucial to understand the effect of exercise and physical activity in older adults.
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Background
According to the World Health Organization (WHO), 
the population aged 60 years will double by 2050, and it is 
projected that people older than 80 will triplicate. These 
increasing numbers could reach over two billion older 
adults in the following decades, becoming a significant 
health issue worldwide to ensure wellness [1].

The aging process is characterized by a progressive 
loss of physiological integrity, leading to impaired func-
tion and increased vulnerability to death [2]. This natural 
condition affects most living organisms because of the 
decline of functionality as aging progress, conducted by 
cellular damage [3]. This deterioration has been widely 
studied in humans because it is the primary risk fac-
tor for significant pathologies [4]. Lopez-Otín and col-
leagues 2013 enumerated nine candidate hallmarks that 
represent common aging denominators and contribute 
to determining the aging phenotype [2]. However, recent 
studies of aging have planned new hallmarks compromis-
ing inflammation and microbiome disturbance, among 
others [5]. This new perspective could better explain 
health outcomes related to aging diseases and therapeutic 
studies to achieve a high-quality lifestyle for older people.

Current advances in sequencing technologies and bio-
informatics pipelines have identified notable changes in 
the gut microbiota/microbiome through the lifespan and 
its substantial effects on human health [6]. The micro-
biome refers to the combined genetic material of all the 
microorganisms (bacteria, fungi, protozoa, megafauna, 
and viruses) living in a particular environment; this term 
is explicitly used to denote the genetic and functional 
diversity of the microorganisms community and its rela-
tionship with the host [7, 8].

In brief, the diversity and abundance of taxa that make 
up the gut microbiota (refers to composition) are highly 
susceptible to change. This is because of external and 
internal factors that are inherent to the human being, 
such as birth mode [9], presence or absence of diseases 
[10], geographical location [11], and diet [12], among 
others. Previous research shows that the intestinal micro-
biota in healthy individuals is stable, especially when 
there is an absence of clinical manipulation (for example, 
indiscriminate use of antibiotics) and healthy lifestyle 
habits, such as an adequate diet and moderate to vigor-
ous physical activity [13]. An adequate balance of bacte-
ria in the digestive tract ensures the microbiota works in 
a symbiotic environment with the host, however, changes 
in diversity could lead to a reduction in the abundance of 
beneficial bacteria and an increase in the prevalence of 
potentially pathogenic microorganisms, also called dys-
biosis [14–17].

Diet is one of the most relevant environmental factors 
in the investigation of the intestinal microbiome since it 

modulates the population of microorganisms consider-
ably [18], factors related to diet and nutrition status are 
key to modulating the composition of microorganisms 
that inhabit throughout the digestive system [19].

The relationship between the consumption of micro-
biota-accessible carbohydrates (MACs) and the produc-
tion of butyrate, as well as the abundance of bacteria that 
produce this short-chain fatty acid, has been explored in 
human studies [20]. Significant reductions in the con-
sumption of this macronutrient lead to a drastic decrease 
in Bifidobacterium spp., Roseburia spp., and Eubacterium 
rectale. Other microbiota members like Clostridium spp. 
are important for colon cells since they release butyrate as 
a final product of fermentation. However, the consump-
tion of various starches and fibers can define the type of 
bacteria that abounds or impacts the intestine [21]. Also, 
the breaking of large chains of amino acids results in the 
generation of metabolites such as hydrogen, methane, 
carbon dioxide, some SCFAs, and branched-chain amino 
acids (BCAAs). These metabolites resulting from the fer-
mentation of amino acids fulfill a wide range of biological 
functions for the host; however, the abundance of some 
of these compounds may be related to inflammation pro-
cesses or chronic diseases, since large amounts can be 
detrimental to the intestinal environment [22].

Although it is not clear the underlying mechanisms 
that drive changes in the gastrointestinal microbiota 
under exercise conditions, a few studies involving omics 
sciences provide possible pathways [23–25]. Schein-
man et al. identified in a cohort of athletes that the genus 
Veillonella increased considerably after running a mara-
thon. Subsequent analysis of the V. atypica strain led the 
authors to conclude that this microorganism promotes 
an improvement in race time because of its conversion 
metabolism of exercise-induced lactate into propionate, 
thus identifying a natural enzymatic process encoded 
in the microbiome that enhances athletic performance 
through the Cori cycle [24]. One of the most relevant 
results is how intestinal colonization of Veillonella 
increases the Cori cycle by providing an alternative 
method of lactate processing whereby systemic lactate 
is converted into SCFAs that re-enter the circulation. 
SCFAs are absorbed in the sigmoid and rectal region 
of the colon and enter the circulation through the pel-
vic plexus, bypassing the liver and draining through the 
vena cava to reach the systemic circulation directly [24]. 
Microbiome-derived SCFAs then directly and acutely 
enhance performance, suggesting that the microbiome 
might access lactate generated during periods of sus-
tained exercise and convert it into these athletic perfor-
mance-enhancing SCFAs.

From infancy to old age, the gut microbiome fol-
lows some patterns related to rapid change, becoming 
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increasingly unique to individuals as they grow [26]. The 
characterization and research around the gut microbi-
ome in older adults emphasize microbial populations 
change considerably by losing the diversity of species 
[27]; indeed, disturbances and diseases have been linked 
to these shifts [28, 29].

Recently, three independent cohorts comprising over 
9000 individuals aged 18–87 characterized gut micro-
bial patterns associated with age. They performed diver-
sity analysis from multiple samples, paying particular 
attention to older adults. The results showed amplicon 
sequence variance (ASV) levels had a unique gut micro-
biome signature independent of sex or body max index 
and more related to age [26]. Otherwise, individuals over 
80 exhibit continued microbial drift depending on health 
status. Wilmanski et  al., identified microbiome patterns 
of healthy aging, such as depletion of core genera, pri-
marily Bacteroides [26], and different microbial meta-
bolic outputs in the blood, such as lower LDL cholesterol 
levels, higher levels of vitamin D and beneficial blood 
metabolites produced by gut microbes. These results are 
consistent with recent findings showing that host metab-
olism is crucial to understand the crosstalk between gut 
communities and the therapeutic alternatives [29, 30]. 
Despite the diet (a central shifter of the gut community 
[31, 32]), physical activity status is now considered a rel-
evant factor in the study of the gut microbiome [33].

Physical activity (PA) is any movement produced by 
skeletal muscles that requires energy expenditure. The 
WHO includes leisure time, transport to and from places, 
and workdays as PA [34, 35]. The amount of activity can 
be quantified between low and vigorous intensity. Some 
types include walking, cycling, sports, and recreational 
activities [35], known to prevent and manage chronic 
non-transmissible diseases (stroke, diabetes, several can-
cers), many of which appear with aging [36].

PA and exercise training are well-known modifi-
able factors in aging, either for preventive medicine or 
chronic disease management. The protective effect and 
physiological response to exercise training have been 
extensively described [37, 38]: enhance the antioxidant 
response, promote activation of anabolic and mito-
chondrial biogenesis pathways in skeletal muscle [39], 
decrease inflammatory profile [40], improve insulin sen-
sitivity, myokine profile and endothelial function [41, 42]. 
These changes confer multiple health outcomes, such 
as reducing symptoms of anxiety and depression [43], 
preventing falls and related injuries [41], improving all-
cause mortality, an incident of type 2 Diabetes (T2D), 
specific cancers, or hypertension, and bone and muscu-
lar health. Physical exercise is associated with healthy 
aging, multisystemic benefits provided to this population 
are condensed in a multidimensional beneficial system; 

increased muscle synthesis, improved respiratory func-
tion, decreased blood pressure levels, and increased neu-
rogenesis, as well as increased bone density muscle mass 
and loss of body fat percentage [44–46].

Several investigations have repeatedly shown that 
exposure to regular physical activity confers multiple 
positive effects on the aging process. The benefits of 
structured aerobic exercise programs are linked to better 
learning and cognitive performance on executive func-
tion and attentional control in aging [47, 48]. Bouts of 
physical activity also have a potential therapeutic capac-
ity in conditions related to older adults, such as dementia 
[49]. Likewise, sufficient results from human and animal 
trials show the downregulation of pro-inflammatory 
cytokines and compounds by cardiovascular exercise [47, 
50–52]. However, the effect of PA and exercise training 
on the composition and function of the gut microbiota in 
older people is not clear, considering the relevant role of 
the gut commensals for health outcomes and the modifi-
cations that confer augmenting PA [53–57].

Cross-sectional [54, 58, 59] and longitudinal [60–62] 
studies have sought to establish differences in the composi-
tion of the human gut microbiota related to physical activ-
ity level (PAL); however, the results are highly variable and 
sometimes contradictory. Only a few results suggest a sig-
nificant difference in α and β diversity indicators between 
subjects with high and low PAL [54, 63]; meanwhile, other 
results show no change in the composition of gut micro-
biota related to exercise regimen [60, 64]. Modification 
of single bacteria taxa has been related to exercise stimu-
lus, especially the increased abundance of Lactobacillus, 
Bifidobacterium, and Akkermansia [65]. Deeper analysis, 
specifically metabolome and metagenomic assays, shows 
significant changes in volatile compounds such as SCFAs 
[23] and unique members of the microbiome like Veil-
lonella [24].

Studies seeking a link between physical activity and 
the gut microbiota include diverse age groups, such as 
older people [66–70] young adults [71, 72], adolescents 
[73], and mostly middle-aged women and men [54, 
60, 61, 64, 74, 75]; likewise, diverse frequency, inten-
sity, and type of exercise interventions can be found in 
these studies [24, 60, 76]. The growing evidence of the 
modulator effect of physical activity on the gut micro-
biota makes it relevant to conduct different systematic 
reviews where the type of population, type of studies, 
and type of exercise intervention are described.

Therefore, this systematic review aims to identify with 
the current and evidence whether starting an exercise 
program or improving PA level brings any notable change 
in the gut microbiota of adults older than 65 and whether 
these modifications are reflected in other physiological 
systems. This systematic review describes the changes 



Page 4 of 19Aya et al. BMC Geriatrics          (2023) 23:364 

in composition, diversity, and function of the gut micro-
biota of older adults that have improved their physical 
activity levels.

Methods
Criteria for considering studies for this review
Types of studies
Since the gut microbiota research field in physical activity 
and exercise is growing, past reviews have showed that 
randomized control studies are few [53, 77]. For that rea-
son, we consider involving: (a) studies describing human 
gut microbiota responses to any exercise stimulus (b) 
cross-sectional studies focused on comparing gut micro-
biota among older adults with different physical activity 
levels—from athletes to inactive individuals; (c) stud-
ies containing older adults women and men (+ 65  years 
old); (d) studies written in English. We excluded studies 
containing probiotic or prebiotic consumption and stud-
ies focused on diabetes and cancer. Reviews, comments, 
letters, interviews, and book chapters were also excluded. 
PRISMA Flow Diagram (Fig. 1) shows the screening pro-
cess for this systematic review [78].

Types of participants
Populations studied in this review were women and men 
in older adults, which means over 65  years old. Since 
it is challenging to reach the elderly with no disease or 
medical condition, we defined our population as aged 
functional subjects with no physical limitation or physi-
cal disability. Studies involving people aged 65 years and 
older with only two medical conditions related to older 
adults or healthy were included.

Types of interventions
The focus of this review is to determine if starting any 
exercise intervention could significantly change the gut 
microbiota; for that purpose, we have established the 
following eligibility criteria for types of intervention a) 
randomized controlled trials designed to improve any 
of the muscular strength, endurance, or flexibility com-
ponents of fitness in the population named before and b) 
non-randomized controlled trials designed to improve 
physical activity level through lifestyle interventions, 
cross-sectional studies will also be included.

Fig. 1 Preferred Reporting Items for Systematic Reviews [78]
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Types of outcome measures
The primary outcomes of interest are those related to 
the diversity and abundance of the gut microbiota. Sec-
ondary outcomes will focus on measures or approaches 
to the function of the gut microbiome. Also, quantifi-
cation of physical activity level (E.g., median daily step 
counts) and outcomes related to maximum oxygen con-
sumption and muscular strength will be considered.

The outcomes of interest for this review are:
-Gut Microbiota Abundance: one term frequently 
used in gut microbiota research is absolute abun-
dance, which refers to the "unobservable actual abun-
dance of a taxon in a unit volume of an ecosystem, 
such as the gut" [79]. It is essential to highlight that 
absolute and relative abundance are entirely differ-
ent terms, according to Lin & Peddada. Changes in 
the absolute abundance of a single taxon can alter the 
relative abundance of all taxa [80].

These parameters are determined by the data got in 
the sequencing process; the next-generation sequenc-
ing (NGS) of the 16S rRNA helps describe microbial 
compositions in a niche. After a quality process, the 
16S amplicon sequences can be clustered into Opera-
tional Taxonomic Units (OTUs) and Sequence Vari-
ants (SVs). In brief, observed counts of OTUs or SVs 
represent observed abundances of taxa in the sample 
[79–81].

-Gut Microbiota Diversity: Gut microbiota diversity 
refers to the number of different species present in 
a sample, niche, or ecosystem [82]. This review will 
be focused on stool samples provided by older adults 
involved in the studies that accomplished the criteria 
for inclusion. The microbial community in this niche 
has mainly been characterized in the past years [18]. 
The bacterial diversity defined by the numerical com-
position can be calculated with different indexes to 
determine the changes in the number of species [83]; 
Alpha diversity refers to the observed richness (num-
ber of taxa) and the relative abundances of those taxa 
(also known as evenness) within a sample. Mean-
while, Beta-diversity is defined as the variability in 
the microbial community composition among sam-
ples [84, 85].

Search methods for identification of studies
The search strategy is summarized in Table 1. The search 
terms "Elderly AND Gut Microbiota OR Gut Micro-
biome AND Physical Activity" were used in the bib-
liographic databases MEDLINE/Ovid, NIH/PubMed, 
and Academic Search Complete. This electronic search 
was done between May 14 and June 15, 2022, and other 
resources were not identified.

Quality assessment
Methodological quality and risk of bias for each study 
were assessed using the Risk Of Bias In Non-randomized 
Studies—of Interventions tool (ROBINS-I) [86] and the 
revised tool to assess the risk of bias in randomized trials 
(RoB 2) [87, 88].

Once a target trial specificity to the study was designed 
and confounding domains were listed, the risk of bias was 
explicitly assessed for the comparisons of interest to this 
review. The overall risk of biased judgment can be found 
in Supplementary Table 1 and Supplementary Table 2.

Results
Description of studies
After the electronic screening and evaluation of the pre-
selected studies, we finally included fifteen studies in 
this review (Fig. 1). The type of study is significant cross-
sectional, followed by controlled trials (randomized and 
non-randomized) and follow-up cohorts that were also 
included [89]. Table 2 collects relevant information from 
studies, such as medical conditions, age, and the number 
of participants who concluded the interventions and/or 
observations.

Results of the search
Likewise, cross-sectional studies did not reflect signifi-
cant changes in gut microbiota diversity. No significant 
differences were detected among diverse groups in the 
relative abundances of the major phyla or alpha diversity 
measures (Chao 1, Simpson, Shannon; Kruskal–Wallis H 
test) [70, 89–96].

Otherwise, relative abundance analysis showed a sig-
nificant change at the genus level in older adults who 
conducted an exercise program for five weeks or more. 
The relative abundance of Clostridioides difficile was 

Table 1 Search strategy of the systematic review

Database Search Query

Medline/Ovid (elderly and (gut microbiota or gut microbiome)).ab. and (physical activity or exercise).ti

NIH/Pubmed (((elderly [Title/Abstract]) AND (gut microbiota [Title/Abstract])) OR (gut microbiome 
[Title/Abstract])) AND (physical activity [Title/Abstract])

Academic Search Complete elderly AND physical activity OR exercise AND gut microbiota
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significantly reduced (P = 0.03) [97], Clostridium sub-
cluster XIVa shows a reduction in women who perform 
endurance exercise for twelve weeks meanwhile the 
genus Bacteroides shows a significantly increased [98].

When comparing the relative abundance of control and 
exercise groups, as shown in Table 3, authors inform sig-
nificant differences in Bacteroides and Subdoligranulum 
[89] and a significant increase of Phascolarctobacterium 
and Mitsuokella in the exercise group [99]. Differential 
abundance analysis between two intervention groups 
conducted at the genus level showed that Haemophilus, 
Butyricicoccus, Eubacterium hallii, and Ruminiclostrid-
ium were reduced. In contrast, Coprobacter, and uncul-
tured bacterium (from Rhodospirillales order) increased 
in the intervention group compared with the control 
group (all FDR P < 0.1) [28].

Similarly, the results described by Magzal et  al. [96] 
in a cross-sectional study including 39 older adults suf-
fering insomnia and classified into the groups high and 
low PAL shows that Bifidobacterium, Clostridium sensu 
stricto 1, Catenibacterium, Peptococcus, Holdemanella, 
and Butyricicoccus are among the genera present in 
more active individuals. Less active people had a higher 
relative abundance of the genera Barnesiella, Blautia, 
Lachnoclostridium, Christensenellaceae R-7 group, and 
UCG-005 [96].

Few studies report significant presence or abundance at 
the species level, Fielding, and collaborators showed that 
Faecalibacterium prausnitzii, Barnesiella intestinihomi-
nis, Bacteroides caccae, and Clostridium citroniae were 
higher in older adults with high fitness profile; mean-
while, a reduction in Eubacterium biforme, Desulfovibrio 
D168, and Escherichia coli was observed when compared 
to the Low Fitness group in a cross-sectional study where 
29 older women and men (70  years) performed a short 
physical battery [92].

Various studies aimed to establish a correlation 
between important indicators of physical activity status 
such as maximal oxygen consumption or VO2 peak (ml/
kg/min) [90, 97, 100], based on the results of cardiores-
piratory fitness, older adults were divided into two or 
three functional groups, where those with higher values 
oscillate between 22.17 ± 0.51 [90], 23.2 ± 5.8 [100], and 
27.3 ± 4.6 (ml/kg/min) [97]. Older people with less VO2 
peak values are shown as statistically significantly lower. 
Correlation analysis exhibit that gut dysbiosis is associ-
ated with the reduced exercise capacity of elderly patients 
with hypertension [90].

Similar findings are observed in a randomized con-
trolled trial [100], where 17 aged adults were assigned 
to exercise (HIT + RT) or a control group, eventu-
ally, after 12  weeks program measurement of VO2max 
(mL·kg − 1·min − 1) was performed, posterior analysis 

showed that the Shannon’s index was positively corre-
lated with VO2max changes; results suggest an associa-
tion between microbiota richness and cardiorespiratory 
fitness improvements [100]. Other correlation analy-
ses between the baseline relative abundance of specific 
microbiota families and the changes in body composi-
tion and cardio metabolic parameters showed that Bifi-
dobacteriaceae abundance was positively correlated with 
fat mass and negatively with muscle mass. Equally, Para-
prevotellaceae and Prevotellaceae were negatively corre-
lated with fat mass and positively with muscle mass [100].

Table  3 shows a trend in the method employed to 
determine gut microbiota composition using the 16S 
rDNA amplicon based NGS. Only one selected study 
indicated Next Generation Sequencing (NGS) [70]. 
Meanwhile, another reported analyzing available data 
from The American Gut Project (AGP) [94, 101]. Table 3 
summarizes the results related to the diversity and com-
position of the gut microbiota. Only significant differ-
ences between groups are described.

A deeper analysis of functional predictions shows that 
some metagenomic functions were significantly dif-
ferent between exercise and control periods (P < 0.05; 
FDR < 0.3). Based on the KEGG database, functions 
related to genetic information processing and nucleo-
tide metabolism were overrepresented after a 5-week 
endurance exercise program in older Japanese men [97]. 
A similar analysis shows some crucial differences in 26 
metagenomic functions when comparing high-fitness 
(HF) and low-fitness (LF) aged people. The authors 
emphasize that the expression of glutathione peroxi-
dase (K00432; GPx) was higher, whereas the remaining 
25 functions were lower in HF when compared with 
LF. GPx was the most highly expressed function (2 to 
20-fold increased) compared to all other significant 
KEGG IDs. [92].

The physical activity frequency is also related to the 
relative abundance of microbial pathways. Zhu and col-
laborators suggest that regular exercise significantly mod-
ulated microbial function in older people because of the 
functional analysis performed in samples recovered from 
the American Gut Project [28]. In synthesis, the relative 
abundances of 18 pathways were significantly higher. In 
comparison, the abundances of 5 of those pathways were 
significantly lower in the daily or regular exercise group 
(DRE) than in the never or rare exercise group (NRE). 
These pathways include vitamin-related pathways, nucle-
otide metabolism-related pathways, glucose metabolism, 
and amino acid metabolism [94]. Some studies have 
involved direct quantification methods, such as untar-
geted metabolomics; Results reported by Castro-Mejía 
et  al., describe significantassociations ( >|0.2| r) for ten 
gut metabolites and five plasma metabolites with lifestyle 
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co-variables, such as steps per day which correlated posi-
tively with mono and di-saccharides metabolism and 
negatively with amino acid and lipid metabolism. Also, 
they did not find an essential difference in the concentra-
tions of Short-Chain Fatty Acids (SCFA) from the fecal 
metabolome according to the high o lower fitness pheno-
type [93]. In contrast, Magzal, and collaborators report 
higher concentrations of total SCFA in people with lower 
physical activity levels [96]; here, acetate was the most 
prevalent SCFA in both groups. Analysis of the difference 
in these volatile compounds revealed that the less active 
group had significantly higher concentrations of propi-
onate, isobutyrate, and valerate compared with the more 
active group. The magnitude of the difference in concen-
tration between the study groups was higher for propion-
ate (η2 = 16). The less active group also had significantly 
higher concentrations of total fecal SCFAs, compared to 
the more active activity group, with a medium effect size 
(η2 = 08) [96].

Finally, we identified a high variability in the frequency 
of physical activity both in longitudinal and cross-sec-
tional studies. In brief, randomized trials included exer-
cise protocols between a) 5 weeks of endurance exercise 
program comprising three ergometer sessions per week 
[97]; b) Supervised resistance training sessions, twice 
weekly for six weeks [66]; c) 8-week exercise train-
ing randomized controlled trial comprised aerobic and 
resistance exercise [99]; d) 12-week comparative trials, 
between aerobic exercise training or trunk muscle train-
ing [98]; 12-week training program included high-inten-
sity training and resistance training three times per week 
[100]. We consider this data is not enough to describe the 
effect of different exercise intensities and durations on 
the composition and function of the gut microbiota of 
older people.

Discussion
This review summarizes 15 studies involving physical 
activity, exercise, and gut microbiota changes. In brief, 
three randomized control trials and 11 cross-sectional 
trials were analyzed to determine whether performing 
an exercise program, or higher levels of PA, are conse-
quent to changes in the diversity, abundance, and func-
tional parameters of the gut microbiota of older adults. 
Similar to reports from other systematic reviews, there 
are no significant shifts in diversity metrics (Alpha and 
Beta). Here, only one study from recovery data reported a 
significant difference in Alpha diversity from overweight 
people with higher PAL. Contrary to similar findings 
reported by Barton et al. [63], the microbiota alpha diver-
sity of elderly athletes defined by the Shannon and Simp-
son index and the Chao1 index did not differ from that of 
the controls [89].

The abundance of some bacteria is higher in aged peo-
ple, after an exercise program, or in comparison with 
control groups, especially at the genus level (Table  3). 
Some of these bacteria are from the Lachnospira and 
Lachnospiraceae NK4A136 group, these microbiota 
members have been described as potentially beneficial 
[102], because they are producers of SCFA [28], and 
the synthesis of these organic acids is usually linked to 
important roles in maintaining colonic host health as an 
energy source, regulator of gene expression, and anti-
inflammatory agents [103], which might be beneficial for 
the host.

Similar to other studies in non-older adults, some 
results included in this systematic review suggest that 
regular exercise significantly modulated microbial func-
tion in elderly individuals the data proportionate so far is 
limited and few studies have included extra analysis such 
as metabolomic assays or metagenomic approach, where 
microbial compounds and relative pathways related to 
physical activity could discover [94], in contrast, other 
studies including non-older adults have reported signifi-
cant findings by using specific analysis techniques and 
combination of omics technologies [69, 104, 105].

Here we highlight the association between the rela-
tive abundance of gut microbiota and physical function 
[99] and a reduced exercise capacity that is negatively 
associated with the core gut microbiota [90, 91]. We also 
identified in this systematic review that similar to results 
presented in cross-sectional studies with young adults [58, 
106], consumption of oxygen by older men and women 
is correlated with species richness and higher diversity 
of bacterial members of the gut microbiota [90, 97, 100], 
which reinforce the hypothesis that effect of PAL is more 
related to functional outcomes rather than compositional 
indicators (such as diversity or abundance) further inves-
tigation is required.

Associations between physical activity and gut micro-
biota have yet to be extensively studied in older adults. 
Existing publications focusing on young adults and 
athletes show consistent results related to the produc-
tion of SCFAs [63]. Also, bacteria such as Akkermansia 
muciniphila and Faecalibacterium prausnitzi have been 
described in the past [107]. In addition, the health sta-
tus of older adults involved in biological and gut micro-
biota studies might be a limiting factor since including 
people with insomnia [96], Arterial Hypertension, Dys-
lipidemia, Hyperglycemia, Prostatic Hyperplasia [97], 
Primary Hypertension [90], Osteoporotic Fractures [91], 
Overweight and Obesity [94], Cardio Vascular Disease, 
Type 2 Diabetes mellitus [95] is present in this systematic 
review. These medical conditions have been reported as 
modulators of gut microbiota composition [23, 108, 109]. 
However, data availability for older adults is limited, and 
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comparing healthy and unhealthy subjects could be com-
plicated to perform.

Although the response to exercise and augment of 
PAL has been extensively studied in diverse biologic sys-
tems, such as the mitochondria, the muscle, the liver, and 
the neurologic system, among others, it is still unclear 
whether these changes are related to the gut micro-
biota in older adults. Past reviews and animal studies 
have linked the possible physiological response to exer-
cise with the community of microorganisms that inhabit 
the gut [53, 110, 111]. We did not find consistent results 
that may reflect the modifications of the gut microbi-
ome in other physiological systems. Some bacteria taxa 
whose abundance changed are beneficial for aged peo-
ple (Table  3), such is the case of the genus Oscillospira 
which is a promising candidate for the next generation 
-of probiotics because of its capacity to produce butyrate 
[112]. Faecalibacterium and Coprococcus have been cor-
related with host quality of life indicators in humans 
diagnosed with depression [113], and some species of 
the genus Bacteroides and Parabacteroides are more 
extraordinary producers of γ-aminobutyric acid (GABA) 
[114]. Similar findings are described for Faecalibacte-
rium prausnitzi that, besides promoting the produc-
tion of metabolites, have been related to the decrease of 

inflammatory markers in patients with Alzheimer’s-type 
dementia [115]. Eubacterium hallii is also considered a 
SCFAs producer, especially propionate [116], thanks to 
metagenomics. It has been discovered that Subdoligran-
ulum MGS (metagenomics species)  was co-abundantly 
found with Akkermansia muciniphila [117], a promising 
biomarker for nutritional status [118].

Otherwise, the study provided by Fielding and collabo-
rators [92] looks to describe a correlation between mus-
cle function and gut microbiota through the colonization 
of mice with microbiota from highly functional older 
adults. Although results are inconclusive, authors stated 
that bacteria taxa at the family-level Prevotellaceae, 
genus level Barnesiella and Prevotella, and species-level 
Barnesiella intestine hominis might be involved in mech-
anisms related to the maintenance of muscle strength in 
older adults [92].

Deeper analysis performed in the studies included 
identifying metagenomic functions and metabolic path-
ways to describe some metabolic signatures related to 
vitamin, amino acid, and glucose functions. In contrast 
with other reports [33, 119, 120], we did not find an 
essential association between SCFA and physical activity 
in older adults. However, very few studies include metab-
olomic assays, and the data is limited (Fig. 2). This allows 

Fig. 2 Schematic representation of the data available from studies included in this systematic review. The amount of information available is mostly 
related to data from 16S rRNA sequencing and the identification of some bacteria associated to beneficial functions for the host; although very few 
studies used metagenomic approaches, some bacterial functions could be identified in future studies. Here, we identify only two studies describing 
SCFAs and results are inconclusive. Future directions could link the already known effect of exercise on brain and muscle function in older adults 
and the gut microbiome
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us to identify that including diverse sequencing meth-
odologies and the analysis of related metabolites such 
as SCFAs and GABA in combination with metagenomic 
approximations could help to describe the role of physi-
cal activity on the gut microbiota of older adults in future 
studies.

Information on taxa and functions related to the ben-
efits of performing PA has been relevant in the identifi-
cation and isolation of probiotic candidates [121]. Also, 
including omics techniques, would give insights into the 
mechanisms underlying the effect of exercise on the gut 
microbiome of older adults and whether it differs from 
young people.

Conclusions
This review aimed to determine if there is any effect on 
the gut microbiota of adults older than 65 who start an 
exercise intervention or improve physical activity level. 
The studies identified do not address this systematic 
review’s objectives. However, almost all the studies ana-
lyzed the diversity and abundance of the gut microbiota; 
there needs to be more information related to function 
and metabolic pathways that can be crucial to under-
stand the effect of exercise and physical activity in older 
adults. It is essential to highlight the lack of randomized 
controlled trials in this field. Most of the studies included 
are observational, and interventions were mainly volun-
tary, based on physical exercise (aerobic or muscular) 
or to increase physical activity through lifestyle changes 
(increasing the number of steps). The lack of data related 
to gut microbiota analysis is a weakness that needs to be 
addressed in future studies.

Limitations of this review
Authors consider that some limitations of this review 
included publication bias because of one of the main cri-
teria to report findings related to physical activity and 
gut microbiota of older adults, which was the statisti-
cal significance even though studies with results that do 
not show statistical significance may be clinically signifi-
cant, and thus important to the findings of a systematic 
review. We also consider that the selection and inclusion 
of cross-sectional studies could be a potential limitation 
in this review. This is the first time that physical activity, 
microbiota, and older adults are compared in a system-
atic review.
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