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Abstract 

Background  The combined effect of serum uric acid (SUA) and blood glucose on cognition has not been explored. 
This study aimed to examine the separate and combined association of SUA and fasting plasma glucose (FPG) or 
diabetes mellitus (DM) with cognition in a sample of Chinese middle-aged and elderly population.

Methods  A total of 6,509 participants aged 45 years or older who participated in the China Health and Retirement 
Longitudinal Study (CHARLS, 2011) were included. The three cognitive domains assessed were episodic memory, 
mental status, and global cognition (the sum of the first two terms). Higher scores indicated better cognition. SUA 
and FPG were measured. The participants were grouped based on SUA and FPG quartiles to evaluate their combined 
associations of cognition with SUA Q1–Q3 only (Low SUA), with FPG Q4 only (High FPG), without low SUA and high 
FPG levels (Non), and with low SUA and high FPG levels (Both), multivariate linear regression models were used to 
analyze their association.

Results  Lower SUA quartiles were associated with poorer performance in global cognition and episodic memory 
compared with the highest quartile. Although no association was found between FPG or DM and cognition, high FPG 
or DM combined with low SUA levels in women (βFPG = -0.983, 95% CI: -1.563–-0.402; βDM = -0.800, 95% CI: -1.369–-
0.232) had poorer cognition than those with low SUA level only (βFPG = -0.469, 95% CI: -0.926–-0.013; βDM = -0.667, 95% 
CI: -1.060–-0.275).

Conclusion  Maintaining an appropriate level of SUA may be important to prevent cognitive impairment in women 
with high FPG.
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Introduction
With the aging population worldwide, dementia causes 
a heavy burden on human society [1]. Patients with 
advanced stages of dementia can be severely disabled, 
and the prevalence of dementia is steadily increasing. 
However, specific drugs to treat dementia are still lack-
ing. People with cognitive impairment likely develop 
dementia decades later [2]. The global prevalence of 
cognitive impairment increases every year and ranges 
from 6 to 12%. Preventing cognitive dysfunction could 
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significantly reduce the high prevalence of dementia 
worldwide [3]. The prevalence of mild cognitive impair-
ment among the Chinese older population over 60 years 
old reached 15.5% (15.2–15.9) in 2020, with a total popu-
lation of approximately 38.77 million [4].

Recent studies have linked low serum uric acid (SUA) 
levels with poor cognitive performance [5]. In a case–
control study with random sampling, the mini-men-
tal state examination (MMSE) score was linearly and 
inversely associated with SUA level [6]. Prospective 
cohort studies also found that a low baseline SUA level 
could be a risk factor for multiple domains of cognitive 
function in older adults [7]. SUA acts as a major antioxi-
dant and reduces the risk of neurodegenerative diseases 
by protecting neurons from oxidative damages [5, 8].

Considerable evidence has shown that blood glucose 
affects cognitive function [9, 10]. Diabetes mellitus (DM), 
glycemic control, and DM duration are related to cog-
nitive dysfunction [11]. A previous study reported that 
fasting plasma glucose (FPG) levels are associated with 
executive function, but not other cognitive domains. 
Therefore, high glucose levels may concur to the multi-
factorial pathogenesis of cognitive dysfunction. Appro-
priate blood glucose regulation may thus improve the 
protection of executive function in cognitively impaired 
older adults [12].

Mice lacking SUA transporters in the gut likely develop 
metabolic syndrome and hyperuricemia, indicating evi-
dence of the causal connection between high levels of 
SUA and blood glucose [13]. Another study found that 
hyperinsulinemia inhibits renal SUA metabolism and 
leads to elevated SUA levels, suggesting an associa-
tion between SUA and hypoglycemia [14]. Other stud-
ies reported no significant relationship between SUA 
and FPG [15]. A previous work on the China Health 
and Retirement Longitudinal Study (CHARLS) found 
that men and women showed an L-shaped relationship 
between SUA and blood glucose [16]. Furthermore, the 
association of SUA and FPG with cognitive function 
among older adults remains unclear.

This study aimed to explore the association of FPG, 
SUA, and their combination with cognitive function and 
to predict the progression of cognitive function impair-
ment to a certain extent.

Materials and methods
Study population
CHARLS is a full-scale, nationally representative 
longitudinal survey of middle-aged and older adults 
(≥ 45  years old) conducted by the National Insti-
tute of Development at Peking University. The survey 
used data from the 2011 national baseline survey with 

17,705 participants. The exact content of CHARLS 
was detailed elsewhere [17]. Participants who 
were < 45  years old (n = 363), had a proxy interview 
(n = 1212), did not complete a cognitive assessment 
(n = 6468), had a history of brain damage or intellectual 
disability at baseline (n = 130), and had missing FPG 
or SUA data (n = 3023) were excluded from our study. 
Finally, a total of 6509 participants were included for 
analysis (Table 1).

CHARLS was approved by the Peking University Ethics 
Review Committee. Informed consent was sought from 
all participants.

Cognitive assessment
The participants were given cognitive measures (includ-
ing the two cognitive areas of episodic memory and 
mental status) by uniformly trained investigators. The 
investigators read a list of Chinese words to the partici-
pants. After which, the participants immediately enumer-
ated the nouns that they heard and then recalled as many 
nouns as possible after 5  min (delayed recall). Episodic 
memory was generally defined as the sum of immediate 
and delayed recall scores, ranging from 0 to 20. Men-
tal status was assessed using the Telephone Interview 
of Cognitive Status (TICS) questionnaire, which is an 
adequate and reasonable method to capture the mental 
status or integrity of a person. The participants answered 
the following questions: subtract 7 several times in a row 
from 100 (up to five times); name the date of the day (day, 
week, month, year, and season), and redraw the picture 
he/she had been shown. The right answers were summed 
up to a single TICS score ranging from 0 to 11. The global 
cognition score was determined by summing up the epi-
sodic memory and TICS scores and ranged from 0 to 31.

Measurements of SUA and FPG
Blood samples were collected from the participants after 
they fasted overnight by uniformly trained staff of the 
Chinese Center for Disease Control and Prevention fol-
lowing standard protocols. FPG level was determined at 
the central study laboratory in Beijing. SUA level (mg/
dL) was analyzed using SUA Plus method, and FPG was 
measured using an enzymatic colorimetric test. The par-
ticipants were divided into groups based on their SUA 
and FPG quartiles. They were also divided into the fol-
lowing groups to evaluate the effect of interplay between 
SUA and FPG on cognitive function with SUA Q1–Q3 
only (Low SUA), with FPG Q4 only (High FPG), without 
low SUA and high FPG levels (Non), and with low SUA 
and high FPG levels (Both).
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Covariates
Several potential covariates were collected including age, 
sex, body mass index (BMI), marital status (currently mar-
ried or not), educational level (primary school or lower, 
middle school, and high school or above), smoking sta-
tus (current, former, and never), alcohol consumption 
(current, former, and never), diagnosis of hypertension, 
diabetes, dyslipidemia, kidney disease, stroke, heart dis-
eases, liver disease, gastrointestinal disease, psychiatric 
problems, and treatment of kidney disease and diabetes 
(including taking Chinese or western traditional medicine 
and taking insulin injections or other treatments).

Statistical analysis
Continuous variables that were not normally distrib-
uted or had heterogeneity of variance were represented 
by median [interquartile range]. The remaining con-
tinuous variables were represented by means (standard 
deviations). Categorical variables were represented by 
percentages. Depending on the situation, Kruskal–Wal-
lis test or analysis of variance was used for continuous 
variables. Chi-square test was used for classified vari-
ables. Multivariable linear regression models were used 
to examine the association between SUA and FPG lev-
els and cognitive scores.

Table 1  Baseline characteristics

Abbreviations: FPG Fasting plasma glucose, SUA Serum uric acid, BMI Body mass index, DM Diabetes mellitus. P values < 0.05 were highlighted in bold

All participants 
(n = 6509)

Non (n = 1117) Low SUA (n = 3764) High FPG (n = 511) Both (n = 1117) P value

Age, years [Q1–Q3] 57 [51–64] 58 [51–65] 56 [49–63] 59 [52–66] 58 [53–64]  < 0.001
Male (n, %) 3257 (50.03) 565 (50.58) 1830 (48.62) 250 (48.92) 612 (54.79) 0.004
FPG, mmol/L 5.69 [5.25–6.30] 5.55 [5.17–5.86] 5.44 [5.10–5.77] 6.93 [6.54–8.09] 7.16 [6.59–8.65]  < 0.001
UA, mg/dL 4.36 [3.62–5.22] 5.93 [5.13–6.62] 3.97 [3.42–4.55] 6.05 [5.25–6.80] 4.05 [3.48–4.64]  < 0.001
Educational level 0.248

  Primary school or lower 3895 (14.86) 662 (59.27) 2261 (60.07) 293 (57.34) 679 (60.79)

  Middle school 1647 (25.30) 275 (24.62) 949 (25.21) 129 (25.24) 294 (26.32)

  High school or above 967 (59.84) 180 (16.11) 554 (14.72) 89(17.42) 144 (12.89)

Currently married 5917 (90.90) 1003 (89.79) 3448 (91.60) 463 (90.61) 1003 (89.79) 0.132

Smoking status  < 0.001
  Current 2043 (31.39) 342 (30.62) 1192 (31.67) 135 (26.42) 374 (33.48)

  Former 614 (9.43) 115 (10.30) 301 (8.00) 64 (12.5) 134 (12.00)

  Never 3852 (59.18) 660 (59.09) 2270 (60.31) 312 (61.06) 609 (54.52)

Alcohol consumption 0.057

  Current 2274 (34.94) 401 (35.90) 1294 (34.38) 171 (33.46) 408 (36.53)

  Former 330 (5.07) 68 (6.09) 170 (4.52) 36 (7.05) 56 (5.01)

  Never 3905 (59.99) 648 (58.01) 2300 (61.11) 304 (59.49) 653 (58.46)

Global Cognition 16.73 ± 4.25 17.06 ± 4.33 16.69 ± 4.22 16.90 ± 4.30 16.50 ± 4.22 0.012
Episodic Memory 8.17 ± 2.97 8.41 ± 3.07 8.14 ± 2.94 8.23 ± 3.12 8.02 ± 2.89 0.013
Mental Status 8.56 ± 2.31 8.65 ± 2.28 8.55 ± 2.31 8.67 ± 2.29 8.49 ± 2.34 0.775

BMI, kg/m2 23.48 [21.23–26.14] 24.22 [21.91–26.95] 22.96 [20.86–25.41] 25.33 [22.70–27.86] 23.99 [21.68–26.65]  < 0.001
DM 1081 (16.61) 47 (4.21) 103 (2.74) 273 (53.42) 658 (58.91)  < 0.001
Hypertension 1667 (25.61) 363 (32.50) 746 (19.82) 232 (45.40) 326 (29.19)  < 0.001
Dyslipidemia 698 (10.72) 134 (12.00) 308 (8.18) 108 (21.14) 148 (13.25)  < 0.001
Kidney disease 435 (6.68) 80 (7.16) 268 (7.12) 27 (5.28) 60 (5.37) 0.098

Liver disease 260 (3.99) 49 (4.39) 142 (3.77) 24 (4.70) 45 (4.03) 0.662

Stroke 117 (1.80) 26 (2.33) 52 (1.38) 20 (3.91) 19 (1.70)  < 0.001
Gastrointestinal disease 1436 (22.06) 212 (18.98) 895 (23.78) 79 (15.46) 250 (22.38)  < 0.001
Heart diseases 809 (12.43) 119 (10.65) 423 (11.24) 96 (18.79) 171 (15.31)  < 0.001
Treatment for kidney 
disease

244 (3.75) 47 (4.21) 151 (4.01) 12 (2.35) 34 (3.04) 0.128

Diabetes treatment 281 (4.32) 19 (1.70) 44 (1.17) 63 (12.33) 155 (13.88)  < 0.001



Page 4 of 10Yuan et al. BMC Geriatrics          (2023) 23:271 

Subgroup analysis of sex was performed because sex 
was associated with lower scores on cognitive testing in 
the multivariate model. The statistical significance of the 
interactions was assessed by adding a multiplicative term 
to the linear regression model. Sensitivity analysis was 
conducted to determine the robustness of the primary 
results. All data were analyzed using STATA version 14 
(StataCorp LP, College Station, Texas, USA).

Results
Baseline characteristics
The baseline characteristics of the study population are 
listed in Table  1. The Non, Low SUA, High FPG, and 
Both groups had 1117, 3764, 511, and 1117 participants, 
respectively. The average age of the total population was 
57 [51–64] years, and the male population accounted for 
50.03%. Statistically significant differences were found in 
age, sex, FPG, UA, smoking status, BMI, DM, hyperten-
sion, dyslipidemia, stroke, heart diseases, gastrointestinal 
disease and diabetes treatment among all groups.

Association between SUA/FPG level and cognitive function
First, the association of SUA level with different cognitive 
domains was examined. After adjusting for age, sex, BMI, 
smoking status, hypertension, dyslipidemia, stroke, heart 
diseases, kidney disease, liver disease, gastrointestinal 
disease, diabetes and diabetes treatment, the participants 

in the lower SUA quartiles had incrementally lower cog-
nitive scores (global cognition and episodic memory) 
than those in the highest quartile groups. The β values 
(95% CI) of the participants were -0.460 (-0.768, -0.153) 
for the SUA Q2 group and -0.420 (-0.731, -0.109) for SUA 
Q1 group in global cognition scores and -0.339 (-0.557, 
-0.122) for the SUA Q2 group and -0.311 (-0.531, -0.091) 
for the SUA Q1 group in episodic memory compared 
with those in the SUA Q4 group (Table 2).

The association of FPG level with different cognitive 
domains was also examined. After adjusting for age, sex, 
BMI, smoking status, hypertension, dyslipidemia, stroke, 
heart diseases, and diabetes treatment, no statistical 
association was found between FPG and cognitive score 
(Table 3).

Combined association of FPG and SUA with cognitive 
function
The combined association of SUA and FPG with cogni-
tive function was significant in global cognition and epi-
sodic memory after adjusting for additional confounders 
(Table 4). After stratification by sex, the combination of 
lower SUA and higher FPG in females was associated 
with poorer performance in global cognition (β = -0.983, 
95% CI: -1.563–-0.402) and episodic memory (β = -0.666, 

Table 2  Association between quartiles of SUA and cognitive function

Adjusted for age, sex, BMI, smoking status, hypertension, dyslipidemia, stroke, heart diseases, kidney disease, liver disease, gastrointestinal disease, diabetes and 
diabetes treatment

Abbreviations: SUA Serum uric acid, BMI Body mass index, DM Diabetes mellitus. βs 95% CI without 0, or P values < 0.05 were highlighted in bold

Variable Global Cognition β (95% CI) Episodic Memory β (95% CI) Mental Status β (95% CI)

SUA Q4 Ref Ref Ref

SUA Q3 -0.256 (-0.561, 0.050) -0.194 (-0.410, 0.022) -0.062 (-0.229, 0.105)

SUA Q2 -0.460 (-0.768, -0.153) -0.339 (-0.557, -0.122) -0.121 (-0.290, 0.047)

SUA Q1 -0.420 (-0.731, -0.109) -0.311 (-0.531, -0.091) -0.109 (-0.279, 0.061)

P for trend 0.004 0.003 0.159

Age -0.117 (-0.130, -0.104) -0.079 (-0.088, -0.070) -0.038 (-0.045, -0.031)
Sex -1.304 (-1.586, -1.023) -0.223 (-0.422, -0.024) -1.082 (-1.236, -0.927)
BMI 0.094 (0.064, 0.124) 0.050 (0.029, 0.072) 0.044 (0.027, 0.060)
Smoke -0.130 (-0.285, 0.024) -0.031 (-0.140, 0.078) -0.099 (-0.184, -0.015)
DM 0.042 (-0.285, 0.368) -0.001 (-0.231, 0.231) 0.042 (-0.137, 0.221)

Hypertension 0.328 (0.054, 0.602) 0.263 (0.070, 0.457) 0.065 (-0.085, 0.215)

Dyslipidemia -0.314(-0.691, 0.063) -0.273 (-0.540, -0.006) -0.041 (-0.248, 0.165)

Stroke 0.095 (-0.734, 0.923) 0.148 (-0.438, 0.734) -0.053 (-0.506, 0.400)

Heart diseases -0.249 (-0.600, 0.103) -0.092 (-0.341, 0.156) -0.156 (-0.348, 0.036)

Kidney disease 0.206 (-0.230, 0.642) 0.040 (-0.268, 0.348) 0.166 (-0.073, 0.404)

Liver disease -0.405 (-0.955, 0.144) -0.327 (-0.716, 0.061) -0.078 (-0.378, 0.222)

Gastrointestinal disease 0.327 (0.063, 0.590) 0.176 (-0.010, 0.363) 0.150 (0.006, 0.295)
Diabetes treatment -0.046 (-0.656, 0.564) -0.113 (-0.544, 0.319) 0.066 (-0.267, 0.400)
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95% CI: -1.072–-0.259). The two models with different 
adjustments were significant (Table 5).

Sensitivity analysis
According to the American diabetes association, dia-
betes is diagnosed if any of the following criteria are 
met: (1) FPG > 7.0  mmol/L; (2) random blood glu-
cose > 11.1  mmol/L; (3) HBA1c > 6.5%; (4) self-reported 
diabetes diagnosed by physicians; and (5) intake of anti-
diabetic drugs or insulin therapy [18]. Although the asso-
ciation between DM and cognitive performance was not 
statistically significant in either men or women (Tables 
S2 and Table S3), in the female group, the global cogni-
tion performance and episodic memory performance of 
patients with DM and low SUA was poorer than those 
without DM but low SUA (Table S4), similar to the main 
results. In addition, the results of the association of SUA 

and FPG as continuous variables with cognitive scores 
are presented in the supplementary material (Tables S5 
and Table S6).

Discussion
This study examined the relationship of SUA, FPG levels, 
and DM to cognitive function among middle-aged and 
older Chinese population. A low SUA level was associ-
ated with poor cognition, but no significant relationship 
was observed between FPG or DM and cognitive func-
tion. Higher FPG level combined with lower SUA level 
was related to poorer cognitive performance among 
female participants. Similar results were found in patients 
with DM and low SUA. The association remained sig-
nificant after adjusting for a wide array of health-related 
variables.

Table 3  Association between quartiles of FPG and cognitive function

Adjusted for age, sex, BMI, smoking status, hypertension, dyslipidemia, stroke, heart diseases, diabetes treatment

Abbreviations: FPG Fasting plasma glucose, BMI Body mass index. βs 95% CI without 0, or P values < 0.05 were highlighted in bold

Variable Global Cognition β (95% CI) Episodic Memory β (95% CI) Mental Status β (95% CI)

FPG Q1 Ref Ref Ref

FPG Q2 0.165 (-0.138, 0.469) 0.092 (-0.123, 0.306) 0.073 (-0.092, 0.239)

FPG Q3 -0.079 (-0.384, 0.227) -0.048 (-0.264, 0.168) -0.031 (-0.198, 0.136)

FPG Q4 -0.096 (-0.409, 0.216) -0.052 (-0.273, 0.169) -0.044 (-0.215, 0.127)

P for trend 0.296 0.411 0.395

Age -0.114 (-0.127, -0.101) -0.077 (-0.086, -0.068) -0.037 (-0.044, -0.030)
Sex -1.331 (-1.612, -1.050) -0.241 (-0.440, -0.042) -1.090 (-1.243, -0.936)
BMI 0.107 (0.077, 0.137) 0.058 (0.036, 0.079) 0.049 (0.033, 0.065)
Smoke -0.132 (-0.286, 0.022) -0.034 (-0.143, 0.075) -0.098 (-0.182, -0.014)
Hypertension 0.271 (-0.002, 0.543) 0.226 (0.033, 0.418) 0.045 (-0.104, 0.193)

Dyslipidemia -0.307 (-0.683, 0.068) -0.277 (-0.543, -0.011) -0.031 (-0.236, 0.175)

Stroke 0.031 (-0.789, 0.852) 0.101 (-0.480, 0.681) -0.069 (-0.518, 0.379)

Heart diseases -0.183 (-0.530, 0.164) -0.060 (-0.306, 0.186) -0.123 (-0.312, 0.067)

Diabetes treatment 0.048 (-0.514, 0.609) -0.078 (-0.476, 0.319) 0.126 (-0.181, 0.433)

Table 4  Association between combination of FPG and SUA quartiles and cognitive function

Model 1: adjusted for age, sex, BMI

Model 2: adjusted for age, sex, BMI, smoking status, hypertension, dyslipidemia, stroke, heart diseases, kidney disease, liver disease, gastrointestinal disease and 
diabetes treatment

Abbreviations: FPG Fasting plasma glucose, SUA Serum uric acid, BMI Body mass index. βs 95% CI without 0 were highlighted in bold

All participants Global Cognition Episodic Memory Mental Status

Model 1 β (95% CI) Model 2 β (95% CI) Model 1 β (95% CI) Model 2 β (95% CI) Model 1 β (95% CI) Model 2 β (95% CI)

Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

Non Ref Ref Ref Ref Ref Ref

Low SUA -0.346 (-0.642, -0.050) -0.383 (-0.683, -0.083) -0.286 (-0.496, -0.077) -0.305 (-0.517, -0.093) -0.060 (-0.222, 0.102) -0.078 (-0.242, 0.086)

High FPG -0.111 (-0.568, 0.346) -0.154 (-0.618, 0.309) -0.145 (-0.469, 0.178) -0.147 (-0.475, 0.181) 0.034 (-0.216, 0.284) -0.007 (-0.261, 0.246)

Both -0.551 (-0.912, -0.190) -0.545 (-0.917, -0.173) -0.390 (-0.645, -0.135) -0.383 (-0.646, -0.120) -0.161 (-0.358, 0.037) -0.163 (-0.366, 0.041)



Page 6 of 10Yuan et al. BMC Geriatrics          (2023) 23:271 

The findings of our research are consistent with those 
of previous studies, which demonstrated the association 
between low SUA levels and poor cognitive function. For 
example, a prospective population cohort study of 4,618 
participants aged 55  years and above found that higher 
SUA levels were associated with a lower risk of dementia; 
as such, a high SUA level was a protective factor for cog-
nitive function [19]. A meta-analysis reported that SUA 
levels were higher in healthy controls without dementia 
but lower in patients with dementia [20]. This result is 
consistent with our findings, that is, a low SUA level was 
associated with poor cognition. The insignificant associa-
tion between FPG and cognitive function is also in line 
with previous results. A Finnish National 2000 Health 
Examination Survey and a subsequent 11-year follow-
up study (baseline included 3695 participants, mean age 
49.3, range 30–86 years, 55.5% women, participants who 
were treated with insulin or unknown diabetes medica-
tion were excluded) also found that FPG levels were not 
associated with cognitive function [21]. However high 
blood sugar levels can cause cognitive impairment in 
individuals with diabetes; cognitive decline occurs in 
areas such as memory, orientation, and executive func-
tion [22]. The relationship between plasma glucose, 
especially outside of diabetes and within the reference 
range, to cognitive functions remains less clear. A previ-
ous study of elderly people (≥ 55 years of age) in a Chi-
nese community found that normal FPG, impaired FPG, 
and glucose in a diabetic state were not associated with 
the degree of cognitive dysfunction (as graded by MMSE 
scores) [23]. Moreover, blood glucose was not associ-
ated with cognitive performance in participants without 
cognitive impairment [12].These inconsistencies in the 

association between plasma glucose and cognition could 
be attributed to the interaction between FPG and SUA.

As the metabolic end product of purines [24], the 
homeostasis of SUA is jointly balanced by endogenous 
production, exogenous supply, excretion and reabsorp-
tion. Xanthine oxidoreductase is the enzyme directly 
responsible for the conversion of purine bases to SUA. 
The endogenous production of SUA mainly occurs in tis-
sues with high expression of xanthine oxidoreductase. In 
humans, the epithelial cells of liver, gastrointestinal tract, 
kidney and lactation mammary gland have the expres-
sion of this enzyme [25], and the organs with the high-
est expression activity are the liver and small intestine 
[26]. The exogenous supply of SUA is mainly derived 
from dietary behaviors such as high-purine foods and 
alcohol intake, which cause an increase in SUA of about 
1-2 mg/dL [27]. SUA excretion and reabsorption efficien-
cies depend on the associated transport system. SUA is 
mainly excreted by the kidneys (about 70%), and the 
rest (about 30%) is excreted by the feces of the intestine. 
Twice reabsorptions of uric acid by the kidneys, result-
ing in 5 to 15% of the initial uric acid being excreted in 
the urine [28]. The difference in the normal physiological 
range of SUA between the sexes may be due to potential 
sex differences in these mechanisms. One study found 
that plasma xanthine oxidoreductase activity was higher 
in females than in males [29]. And the increase in SUA 
caused by a high-purine diet is more likely to occur in 
men [30]. The higher prevalence of gastrointestinal dis-
ease in Chinese elderly was found in women in this study 
(Table S1). In addition, there were gender differences in 
renal function impairment [31]. These potential sex dif-
ferences in the mechanisms by which SUA maintains 

Table 5  Association between combination of FPG and SUA quartiles and cognitive function (stratified by sex)

Model 1: adjusted for age, BMI, hypertension

Model 2: adjusted for age, BMI, smoking status, hypertension, dyslipidemia, stroke, heart diseases, kidney disease, liver disease, gastrointestinal disease and diabetes 
treatment

Abbreviations: FPG Fasting plasma glucose, SUA Serum uric acid, BMI Body mass index. βs 95% CI without 0, or P values < 0.05 were highlighted in bold

Global Cognition β (95% CI) Episodic Memory β (95% CI) Mental Status β (95% CI)

Male Model 1 Model 2 Model 1 Model 2 Model 1 Model 2

  Non Ref Ref Ref Ref Ref Ref

  Low SUA -0.323 (-0.711, 0.065) -0.314 (-0.705, 0.078) -0.324 (-0.601, -0.046) -0.317 (-0.598, -0.037) -0.001 (-0.216, 0.216) 0.004 (-0.215, 0.222)

  High FPG -0.098 (-0.704, 0.509) -0.120 (-0.733, 0.494) -0.204 (-0.638, 0230) -0.201 (-0.641, 0.238) 0.106 (-0.231, 0.444) 0.082 (-0.260, 0.423)

  Both -0.227 (-0.691, 0.238) -0.182 (-0.657, 0.293) -0.194 (-0.526, 0.138) -0.158 (-0.498, 0.182) -0.033 (-0.291, 0.226) -0.024 (-0.288, 0.241)

Female

  Non Ref Ref Ref Ref Ref Ref

  Low SUA -0.458 (-0.908, -0.008) -0.469 (-0.926, -0.013) -0.302 (-0.617, 0.014) -0.298 (-0.618, 0.022) -0.156 (-0.398, 0.086) -0.171 (-0.417, 0.075)

  High FPG -0.046 (-0.733, 0.641) -0.197 (-0.896, 0.503) -0.046 (-0.528, 0.436) -0.115 (-0.604, 0.375) 0.001 (-0.369, 0.370) -0.082 (-0.459, 0.294)

  Both -0.900 (-1.459, -0.342) -0.983 (-1.563, -0.402) -0.619 (-1.011, -0.227) -0.666 (-1.072, -0.259) -0.281 (-0.582, 0.019) -0.317 (-0.629, -0.005)

P for interaction 0.047 0.046 0.072 0.078 0.193 0.169
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homeostasis provide an important basis for our sex-strat-
ified analysis.

The potential risk effect of low SUA on cognitive 
domains may be explained by several mechanisms. Many 
studies have demonstrated the antioxidant properties of 
SUA over the decades. Urate accounts for about half of 
the antioxidant capacity of human plasma, and its anti-
oxidant properties are as powerful as ascorbic acid [27, 
28]. The main function of SUA is to remove reactive 
oxygen species and peroxynitrite; urate also protects the 
human blood from iron-mediated oxidation of ascorbate 
[32, 33]. In addition, under a phylogenetic perspective, 
the inability to catabolize uric acid might have conferred 
an advantage against age-related diseases mediated by 
high circulating SUA levels [34]. The intricate mecha-
nisms of SUA in oxidative stress are important. The SUA 
level may affect the oxidative activity in the brain to a 
certain extent, and oxidative stress is a significant cause 
of cognitive dysfunction [35]. SUA is a potent antioxi-
dant that has been studied for potential neuroprotective 
treatment [36]. The mechanism of action of SUA appears 
pleiotropic and is not only confined to a redox paradigm. 
Another study found that lower levels of SUA were asso-
ciated with lower brain metabolism related to cognitive 
disorder [37]. These findings are the basic hypothesis of 
the research on SUA and cognitive function.

The combination of low SUA and high FPG or DM 
was associated with poor cognitive function among the 
female participants. A low level of SUA is a potential 
risk factor for the nervous system due to its antioxidant 
properties. Hyperglycemia increases the body’s addi-
tional redox stress burden [38]. In animal models of DM, 
hyperglycemia induces a redox imbalance (an increase in 
the NADH/NAD+ ratio due to the oxidation of NADH 
to NAD+), which in turn adversely affects vascular and 
neurological function [39]. This redox stress depletes 
the body of other antioxidants [40]. Therefore, lack of 
SUA is more dangerous during hyperglycemia, and the 
co-existence of the two potential cognitive risk factors 
may result in poor cognitive outcome. This finding sug-
gests that a moderate increase in SUA is associated with 
better cognitive function in female patients with higher 
blood glucose levels. The high glucose state increases 
the number of oxygen free radicals, induces endothe-
lial cell apoptosis, restricts cerebrovascular production, 
and affects cerebral blood supply [41], leading to neuro-
logical dysfunction [42, 43]. In hyperglycemia, endothe-
lial nitric oxide synthase is susceptible to uncoupling. 
When uncoupling occurs, NAD(P)H reacts with O2 and 
endothelial cells produce superoxide (O2•) instead of 
protective endothelial NO [44]. NO protects the antioxi-
dant properties of SUA [45],so decreased NO production 

during hyperglycemia may lead to a reduced antioxidant 
contribution of SUA. This phenomenon is a possible 
explanation for the lack of protective cognitive effect of 
high FPG combined with high SUA.

The association of high FPG and low SUA with poor 
cognition was observed in women only, indicating that 
elderly women with high FPG are more in need of high 
SUA for antioxidant. Corroborating this point of view, a 
study in premenopausal women after hysterectomy, ovi-
duct, and ovariectomy reported that the gene expres-
sion of superoxide dismutase and glutathione peroxidase 
is estrogen dependent [46]. Animal experiments in rats 
showed increased activity of NADPH oxidase (which pro-
motes reactive oxygen species generation) when estrogen 
is absent [47]. Decreases in estrogen level can change the 
expression of important oxidative stress-related enzymes, 
causing heavy oxidative stress among elderly women. 
The APOE4 allele is the most important genetic factor 
that increases the risk of Alzheimer’s disease [48]. An 
animal model study found that female APOE4 carriers 
had higher levels of oxidative stress in their brains, espe-
cially at synaptic terminals [49]. A human RNAseq analy-
sis also showed that oxidative stress-related genes were 
highly expressed in female APOE4 carriers [50]. Func-
tional magnetic resonance imaging (MRI) showed that 
female APOE4 carriers had weaker brain connectivity in 
the precuneus and posterior cingulate cortex compared 
with male APOE4 carriers [51]. Studies of APOE4 sup-
port indicated that the female brain had a higher risk of 
oxidative stress than the male brain. Female diabetic rats 
had significantly higher levels of NADPH oxidase 1 and 
NADPH oxidase 4 than female non-diabetic rats and male 
diabetic or non-diabetic rats [52]. The results suggest 
that high glucose level and female gender are important 
risk factors for oxidative stress. In addition, white matter 
lesions are a pathological substrate for cognitive impair-
ment [53], as individuals with cognitive impairment were 
found to have more periventricular white matter hyper-
intensities (WMH) on the MRI scans [54]. People with 
higher FPG had more WMH than those with normal 
FPG [55]. The difference in the results between sexes is 
because female have more WMH [56]. The sex difference 
is also particularly pronounced for periventricular WMH 
[57]. Thus, high blood sugar levels may be an important 
risk factor for cognitive function in women. In conclusion, 
the antioxidant effects of high SUA may be particularly 
important for elderly female participants with high FPG 
level and oxidative stress and low antioxidant defenses. 
Men have a higher risk of cerebrovascular diseases than 
women [58]; as such, the higher SUA-related cerebrovas-
cular burden may counteract the antioxidant effects of 
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high SUA, which may explain why the results were not 
significant in men.

This study has some advantages. First, the results pro-
vided additional evidence to explore the potential rela-
tionship of FPG and SUA to cognitive decline. Second, 
CHARLS contained a number of possible confound-
ers potentially affecting cognitive function, and these 
covariables were reasonably adjusted through multi-step 
analysis. Third, in addition to quaternized SUA and FPG, 
sensitivity analyses were conducted for the combination 
of DM and low SUA, thereby improving the robustness 
of the results. However, some limitations should be con-
sidered. First, this work was an observational study. Thus, 
no clear cause-and-effect relationship could be obtained. 
Second, the included individuals had significantly higher 
educational levels and cognitive scores than the excluded 
CHARLS participants (Table S1). Thus, our findings are 
suggestive only for participants with better cognitive and 
educational levels. Third, measurement of SUA and FPG 
levels only once may not be sufficient to accurately esti-
mate a representative concentration level for a person 
over time. Fourth, although cognitive function in several 
cognitive domains was measured, it may still be rela-
tively limited and the effect of SUA/blood glucose levels 
on other cognitive domains, such as executive function, 
remains unclear. Finally, we lacked information on the 
structure of the high-purine diet of the participants.

Lower SUA was associated with poorer cognitive func-
tion in women with higher blood sugar levels. The small 
β in our study is different from previous studies, sug-
gesting that a change in SUA of one quartile is associ-
ated with a small change in cognitive function, which 
may not be clinically applicable but can be predictive. 
Further research is warranted to examine whether or 
not combined interventions for controlling SUA in a 
slightly higher range and FPG in a slightly lower range 
could translate into clinical benefits for the protection of 
cognition.
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