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Abstract 

Background  In recent years, virtual reality (VR) has evolved from an alternative to a necessity in older adults for 
health, medical care, and social interaction. Upper limb (UL) motor skill, is an important ability in manipulating VR 
systems and represents the brain’s regulation of movements using the UL muscles. In this study, we used a haptic-
feedback Virtual Box and Block Test (VBBT) system and an Intrinsic Motivation Inventory (IMI) to examine age-related 
differences in UL motor performance and intrinsic motivation in VR use. The findings will be helpful for the develop-
ment of VR applications for older adults.

Methods  In total, 48 young and 47 older volunteers participated in our study. The parameters including VBBT score, 
number of velocity peaks, velocity, grasping force and trajectory length were calculated to represent the task perfor-
mance, manual dexterity, coordination, perceptive ability and cognitive ability in this study.

Results  Age-related differences could be found in all the parameters (all p <  0.05) in VR use. Regression analysis 
revealed that the task performance of young adults was predicted by the velocity and trajectory length (R2 = 64.0%), 
while that of older adults was predicted by the number of velocity peaks (R2 = 65.6%). Additionally, the scores of 
understandability, relaxation and tiredness were significantly different between the two groups (all p <  0.05). In older 
adults, the understandability score showed large correlation with the IMI score (|r| = 0.576, p <  0.001). In young adults, 
the correlation was medium (|r| = 0.342, p = 0.017). No significant correlation was found between the IMI score and 
VBBT score (|r| = 0.142, p = 0.342) in older adults, while a medium correlation (|r| = 0.342, p = 0.017) was found in 
young adults.

Conclusions  The findings demonstrated that decreased smoothness in motor skills dominated the poor VR manipu-
lation in older adults. The experience of understandability is important for older adults’ intrinsic motivation in VR use.
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Background
Virtual reality (VR), as a kind of digital technology, 
is beginning to emerge for use in older adults [1, 2]. In 
recent years, VR has been used not only in commercial 
games for entertainment but also in serious games for 
health [3], medical care [4], and social interaction [5, 6]. 
The elderly in particular have benefited from this tech-
nology due to the outbreak of infectious diseases, such 
as COVID-19, since VR could be a helpful solution that 
meets requirements in health care due to isolation and 
protective measures [6, 7]. Recently, the use and interpre-
tation of VR devices and tasks have evolved to be a neces-
sity rather than an alternative. However, older adults 
commonly exhibit poor performance in VR interaction 
due to the decline in abilities related to motion, percep-
tion and cognition [8–10]. This tends to dampen their 
enthusiasm in VR participation. It has been reported that 
intrinsic motivation plays an important role in improving 
participants’ enthusiasm [11, 12]. Therefore, it is neces-
sary to investigate the age-related differences in perfor-
mance and intrinsic motivation in VR use for developing 
appropriate VR systems for older adults.

Upper limb (UL) motor skill is an important ability rep-
resenting the brain’s regulation of movements using the 
muscles of the hands, wrists, elbows and shoulders [13]. 
Older adults exhibit an evident decline in UL motor per-
formance because of remodeled or atrophied muscle fib-
ers [14, 15], weakened sensitivity of tactile and kinesthetic 
receptors [16], reduced speed of peripheral nerve con-
duction [17, 18] and deteriorated structure and function 
in motor-related brain regions [19]. These retrogressive 
changes may lead to low smoothness [20, 21] and speed 
[20, 22] of movements, inappropriate grasping forces reg-
ulated by haptic perception (mediated by cutaneous and 
kinesthetic) [9, 23] and unoptimized routes in task execu-
tion related to cognitive ability [24]. These changes can be 
characterized by kinematic or kinetic parameters [25–27]. 
However, few studies have indicated the differences in 
contributions of those parameters between young and 
older adults in VR performance. A meta-analytic review 
suggested that intrinsic motivation could promote 
engagement in an activity via the internal satisfaction 
caused by the enjoyment and quality of the experience 
[28]. Motivation might be stimulated by the game itself 
or by the immersive quality of VR technology [29]. To 
the best of our knowledge, few studies have explored the 
motivational affordances of VR use in older adults. The 
understanding of factors related to intrinsic motivation in 
VR use is important to provide preliminary data to guide 
the development of VR applications for older adults.

Haptic immersion, an important element in VR tech-
nology, provides the perception of texture, weight and 

compliance of manipulated objects, allowing users to 
interact with virtual environments in a more realistic 
manner [26]. Kinematic and kinetic measures obtained 
by haptic devices are validated to quantify users’ per-
formance. Previous studies reported that VR systems 
with haptic devices can be used to identify the impair-
ments of patients with deficiencies in UL motor func-
tion [30–32]. The Box and Block Test (BBT) has been 
widely used to assess UL motor ability due to its mer-
its, such as simple operation, short time consumption 
and high validity [33, 34]. In our previous study, we 
developed a virtual box and block test (VBBT) system 
to examine the task performance of stroke patients and 
found that the kinematic and kinetic metrics obtained 
from haptic devices were effective in characterizing 
their motor functions [35].

In the current study, we used the VBBT system to inter-
pret 1) the differences in motor, perceptive and cognitive 
abilities between older and young adults during VR use; 
2) the weight of motor, perceptive and cognitive abili-
ties in the contribution to VR performance of older and 
young adults; and 3) the difference in intrinsic motiva-
tion toward VR use between older and young adults. The 
hypothesis was that there were significant differences in 
UL motor performance and intrinsic motivation in VR 
use between young and older adults. The findings will be 
helpful for the development of VR applications for older 
adults.

Methods
Ethical approvals
The current study adhered to the tenets of the Declara-
tion of Helsinki, and ethical approval was obtained from 
the Biological and Medical Ethics Committee of Beihang 
University (Number: BM20180017). Each participant 
was given written and verbal information on the current 
study, and written informed consent was obtained prior 
to study involvement.

Participants
Forty-eight young volunteers (age: mean ± SD = 28.03 ±  
7.07 years, range = 18–45 years; 28 females and 20 males)  
and 47 older volunteers (age: 71.09 ± 7.05 years; 60–87 years; 
34 females and 13 males) were enrolled in this study. 
All participants were right-handed with normal or cor-
rected-to-normal vision and without any neurological 
disorder, musculoskeletal impairment or cyber sickness. 
Older participants were excluded if they were incapable 
of normal cognitive function as assessed by the Mini-
Mental State Evaluation score (MMSE < 24).
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Experimental setup
The experimental setup has been reported in our previ-
ous study [35]. In the VBBT scenario, a virtual test box 
with a barrier partition in the middle was created in the 
VR environment (Fig. 1a). The VBBT system consisted of 
a VR headset (Oculus Rift, Facebook Inc., U.S.; Fig. 1b), 
which was used to provide a 3D virtual environment, as 
well as a haptic device (Omega.7, Force Dimension Inc., 
Switzerland; Fig.  1c), which was used to provide haptic 
feedback to the participant’s hand and precisely collect 
the movement data. The handle of the haptic device is 
represented by a virtual grasping tool. As a participant 
operated the handle, the grasping tool was synchronously 
operated in the virtual environment. The force thresh-
old was set to 0.2 N. The block would drop if the grasp-
ing force was under the threshold. At the beginning of 
the VBBT, there was one block that was created in the 
compartment of the box on the side of the tested hand. 
The virtual box and each block were attributed physical 
properties, including tactile contact and gravity (block: 
8.82 × 10− 2 Newtons). During the VBBT performance, 
when a participant had completed one trial in which a 

block was moved from one compartment to the other, 
another block was then automatically created.

Experimental procedure
The participants were seated on a standard height chair 
with their left hand pronated and rested on a table on 
their left side, with the right elbow flexed approximately 
90 degrees and the shoulder abducted approximately 30 
degrees. The haptic device was placed on the table before 
the participants (see Fig. 2). We first instructed the par-
ticipants on how to operate the haptic device. Then, the 
participants, wearing the VR headset, were given a famil-
iar session before the formal test. In the familiar session, 
there was enough time for the participants to manipu-
late the VBBT system until they thought they were suf-
ficiently comfortable with it and were capable of moving 
the blocks as fast as possible. In the formal tests, the par-
ticipants were given 1 min to move as many blocks as 
they could until the program automatically stopped.

After the participants finished the VBBT, they were 
given a simplified Intrinsic Motivation Inventory (IMI, 
Fig. 3) to evaluate their experiences of the VR use, and an 

Fig. 1  The VBBT system. a The VBBT scenario. b The VR headset. c The haptic feedback device
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informal interview was conducted regarding their experi-
ences. In the IMI, there were 6 sentences corresponding 
to 6 items, including difference, understandability, enjoy-
ment, attraction, relaxation, effort and tiredness. The IMI 
score was the sum of each item score except for effort 
and tiredness, the scores of which should be subtracted 
from 8 for this method could indicate more of the con-
cept described for intrinsic motivation.

Measurement
In the VBBT, some specific parameters were computed 
to investigate the motor, perceptive and cognitive abili-
ties of the participants. Originally, to the number of 
moved blocks, 3D position and velocity of the virtual 
block, as well as the grasping force, were collected by 
the haptic device. The number of moved blocks in 1 min 
was referred to VBBT score. All signals were sampled at 
a frequency of 100 Hz and were stored on a computer 
(IntelCore 7, 3.2 GHz, Windows 10). Then, a 2nd-order 
lowpass Butterworth filter with a cut-off frequency of 
6 Hz was used to filter the data. All the parameters were 
computed by the mean value across all the moved blocks 

for each participant. For the purpose of our research, in 
addition to the VBBT score, the kinematic and kinetic 
parameters we computed in the VBBT were defined as 
follows.

Number of velocity peaks
The number of velocity peaks in a virtual block transfer, 
provided an estimation of the number of submovements 
that represented repetitive accelerations and decelera-
tions for completing the movement segment [30, 36]. In 
our study, it was a measure of movement smoothness 
and UL coordination that would affect the accuracy of 
VR manipulation [37]. The lower the number of velocity 
peaks was, the better the movement smoothness of the 
VR manipulation.

Velocity
The mean value of the velocity in a virtual block trans-
fer, was used to evaluate movement speed [38, 39]. In our 
study, it was a measure of manual dexterity affecting the 
efficiency of VR manipulation. The higher the velocity 
was, the better the manual dexterity of the VR manipu-
lating. The velocity value was calculated using Eq.  1 for 
statistical analyses

where n is the number of sampling points; V is the mean 
value of the velocity in a virtual block transfer; and Vx, i, 
Vy, i, and Vz, i are the velocities along the x-axis, y-axis and 
z-axis, respectively, collected by the haptic device.

Grasping force
The mean of the grasping force in a virtual block trans-
fer, was used to indicate how much effort the partici-
pant used to overcome resistance and make an object 
move during the transferring task. In our study, it was a 

(1)V =

n
i=1 V 2

x,i + V 2
y,i + V 2

z,i

n

Fig. 2  Participant manipulated the VBBT system

THE POST-EXPERIMENTAL INTRINSIC MOTIVATION INVENTORY

For each of the following statements, please indicate how true it is for you, using the following scale:

1 2 3 4 5 6 7

not at all true somewhat true very true

Q1: I think the VBBT is quite easy to understand. ( )

Q2: I enjoy to perform VBBT very much. ( )

Q3: I think the VBBT can hold my attention very well. ( )

Q4: I feel very relaxed in performing the VBBT. ( )

Q5: I put a lot of effort into the VBBT. ( )

Q7: I feel very tired after the VBBT. ( )

Fig. 3  The Intrinsic Motivation Inventory for all participants
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performance that reflected the perceptive ability to per-
ceive the weight, texture and compliance of the virtual 
object [40] in VR manipulation. The larger the grasping 
force was, the lower the haptic perception ability. The 
value of grasping force was calculated using Eq. 2 for sta-
tistical analyses

where n is the number of sampling points, F is the mean 
value of the grasping force in a virtual block transfer, and 
Fi is the grasping force collected by the haptic device.

Trajectory length
The length of the actual trajectory in a block transfer trial, 
reflected the task optimization ability [41]. In our study, it 
was a performance to represent the cognitive abilities of 
motor planning and executive ability in the VR task. The 
shorter the trajectory length was, the better the cognitive 
ability. The value of trajectory length was calculated using 
Eq. 3 for statistical analyses

where n is the number of sampling points; S is the mean 
value of the trajectory length in a virtual block trans-
fer; and xi, yi, and zi are the position coordinates on the 
x-axis, y-axis and z-axis, respectively, collected by the 
haptic device.

IMI
The IMI is a measurement instrument that is intended 
to assess participants’ subjective experience related to 
a target activity in laboratory experiments [42]. In our 
study, it was used to assess the understandability, enjoy-
ment, attraction, relaxation, effort and tiredness of each 
participant during the VBBT. A higher score for each 
aspect indicated that the participant experienced more of 
the indicated aspect, except for the effort and tiredness, 
because these two scores are the reverse of the partici-
pant’s response concerning intrinsic motivation.

Statistical analysis
We calculated the mean and variability (i.e., standard 
deviation: SD) of each parameter produced by each 
trial. All data were analyzed using SPSS 23.0 (Statisti-
cal Package for Social Sciences Inc. Chicago, IL, USA). 
The normality of the parameters was tested using his-
togram plots and Shapiro–Wilk tests. Independent 
sample t tests were performed to compare age-related 
differences in parameters of velocity, VBBT score and 

(2)F =

∑n
i=1 Fi

n

(3)S =

∑n−1

i=1

√

(

xi+1 − xi
)2

+

(

yi+1 − yi
)2

+

(

zi+1 − zi
)2

trajectory length between young and older adults 
because the data were normally distributed. The Mann–
Whitney nonparametric U test was performed to com-
pare age-related differences in the parameters number 
of velocity peaks and grasping force between the two 
groups due to nonnormal distributions. In each group, 
we conducted a stepwise multiple linear regression 
analysis to determine which parameters could predict 
task performance in each group. These analyses were 
performed to investigate whether the predictors of task 
performance were similar in each group. The group 
(young and older adults) was created as a dummy vari-
able and used as a moderating variable in the regression 
analysis to determine the differences in contributions of 
kinematic and kinetic parameters in VR performance 
between young and older adults. Pearson (if the distri-
butions of the variables were normal) and Spearman’s 
rank correlation coefficients (if the distributions of the 
variables were abnormal) were used to determine the 
correlation between pairs of all independent variables, 
and those with correlation coefficients greater than 0.7 
were not included in the same model [43]. The analy-
sis of the IMI scores for the VR use between the two 
groups was performed by nonparametric tests since 
they were ordinal variables [44]. Spearman’s rank cor-
relation coefficients were computed among each item 
score and IMI score and the VBBT score. Correlations 
were considered trivial (r <   0.1), small (0.1 ≤ r <   0.3), 
medium (0.3 ≤ r <   0.5) and large (r > 0.5) according to 
Cohen’s conventions [45].

Results
Group differences in measures
Table  1 shows that all the parameters, including the 
VBBT score, velocity, number of velocity peaks, grasp-
ing force and trajectory length were significantly dif-
ferent between older and young adults (all p <   0.001). 
It indicated thatnparticipants’ VR performance, move-
ment smoothness and speed, haptic perception as well 
as motor planning and executive abilities in VR use was 
worse than those of young adults.

A radar chart (see Fig. 4) was plotted to show the differ-
ences in abilities including the task performance, move-
ment speed, movement smoothness, cognitive ability 
and perceptive ability between older and young adults. 
In the chart, the values of parameters in both older and 
young adults were normalized by the relative value of 
young adults, i.e., values of the parameters in both groups 
were divided by the relative values of the young group. 
If a value for older adults was larger than that for young 
adults, then its reciprocal was calculated.
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Models of multiple linear regressions in older and young 
adults
Multiple linear regression was conducted to predict 
participants’ task performance with the VBBT score 
from the kinematic and kinetic parameters that repre-
sented the motor, perceptive, and cognitive abilities. In 
older adults, the prediction model of task performance 
was explained by the number of velocity peaks, F (45, 
1) = 88.55, p < 0.001. The beta weight of the number of 
velocity peaks was − 0.814 (see Table 2).

In young adults, the prediction model of task perfor-
mance was explained by the parameters of velocity and 
trajectory length, F (45, 2) = 42.87, p < 0.001. The beta 
weights of velocity and trajectory length were 0.797 
and − 0.326, respectively (see Table 3).

Group was one of the predictors of VBBT score (see 
Table 4). This results indicated that the contributions 
of kinematic and kinetic parameters between young 
and older adults in VR performance is significantly 
different.

Table 1  Differences in each parameter between young and older adults

Parameters Older adults
Mean (SD)

Young adults
Mean (SD)

p Cohen’s d

VBBT score 21.85 (5.53) 35.88 (5.27) <  0.001 2.60

Number of velocity peaks 4.92 (1.99) 2.56 (0.55) <  0.001 −1.62

Velocity (m/s) 0.14 (0.04) 0.20 (0.03) < 0.001 1.70

Grasping force (N) 4.20 (0.59) 3.69 (0.67) < 0.001 −0.81

Trajectory length (mm) 265.82 (33.17) 233.90 (21.90) < 0.001 −1.14

Fig. 4  Radar chart for older and young adults

Table 2  Model of VBBT score by kinematic and kinetic 
parameters in older adults

Parameters Adjusted R2 F p β VIF

VBBT score 0.656 88.55 < 0.001

Number of 
velocity peaks

−0.814 1.000

Table 3  Model of VBBT score by kinematic and kinetic 
parameters in young adults

Parameters Adjusted R2 F p β VIF

VBBT score 0.640 42.81 < 0.001

Velocity 0.797 1.028

Trajectory length −0.326 1.028

Table 4  Model of VBBT score by kinematic and kinetic 
parameters in young and older adults

Parameters Adjusted R2 F p β VIF

VBBT score 0.888 249.01 < 0.001

Velocity < 0.001 0.627 1.754

Trajectory length < 0.001 −0.300 1.361

Group < 0.001 0.242 2.219
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Group differences in each item score and IMI score
Table 5 shows that the scores of items, including under-
standability (p = 0.021), relaxation (p = 0.031) and 
tiredness (p = 0.046) in older adults were significantly 
different than those in young adults. It indicated that 
although older adults could not understand the VBBT 
task as well as young adults, they felt more relaxed and 
less exhausted during the VBBT task. No significant dif-
ference was found between older adults and young adults 
in the scores of other items, including enjoyment, attrac-
tion and effort. There was no significant difference in the 
IMI score between the two groups.

Correlational results among the score of each item, IMI 
score and VBBT score
Table  6 shows the correlations between each item 
score and IMI score in each group. Besides the scores 
of relaxation, effort and tiredness items (|r| = 0.508 to 
0.649, all p < 0.001), the score of understandability item 
showed large correlations with the IMI score (|r| = 0.576, 
p < 0.001) in older adults. While in young adults, the 
score of enjoyment item showed large correlations with 
the IMI score (|r| = 0.520, p < 0.001).

Table  7 shows the correlations between each item 
score and the VBBT score in each group. No significant 
correlation was found between each item score and the 
VBBT score (|r| = 0.046 to 0.268, p = 0.069 to 0.761) in 
older adults. In young adults, no significant correlation 
was found between each item score and the VBBT score 
(|r| = 0.042 to 0.197, p = 0.180 to 0.777), except for the 
enjoyment score, which showed a medium correlation 
(|r| = 0.435, p = 0.002) with the VBBT score.

Figure 5 shows the correlations between the IMI score 
and the VBBT score in each group. No significant corre-
lation was found between the IMI score and VBBT score 
(|r| = 0.142, p = 0.342) in older adults, while a medium 
correlation was found between the IMI score and VBBT 
score (|r| = 0.342, p = 0.017) in young adults.

Discussion
In the current study, we used the VBBT system to exam-
ine the differences in task performance, motor, percep-
tive and cognitive abilities and intrinsic motivation in 
VR use between older and young adults. We determined 
kinematic and kinetic parameters that could be used to 
predict task performance and reflect the variance in 
VBBT operation. Additionally, we compared IMI scores 
between the two groups to assess their intrinsic motiva-
tion. Our results were expected to help the design of VR 
devices for older adults in the future.

In recent years, the combination of VR technology and 
haptic devices has been used to provide a high degree of 
controlled and manipulated stimuli, allowing various cus-
tomization for various UL tasks [46]. Haptic perception 
refers to active manual exploration accompanied by affer-
ent sensation that is based on the cumulative neural input 
from mechanoreceptors (articular, muscular, and cutane-
ous receptors) [23, 47, 48]. The density of mechanorecep-
tors decreases, nerve conduction velocity and sensory 

Table 5  Differences in each item score and IMI score between 
young and older adults

Items Older adults
Mean (SD)

Young adults
Mean (SD)

p

Understandability 6.13 (1.44) 6.73 (0.64) 0.021
Enjoyment 6.40 (0.92) 6.19 (1.00) 0.214

Attraction 6.62 (1.11) 6.56 (0.99) 0.223

Relaxation 6.32 (1.35) 5.66 (1.77) 0.031
Effort 2.11 (1.81) 1.96 (1.13) 0.393

Tiredness 1.94 (1.81) 2.21 (1.47) 0.046
IMI score 37.43 (4.77) 36.96 (3.86) 0.280

Table 6  Correlations between each item score and IMI score in each group

* Significant correlation p < 0.05
** Significant correlation p < 0.001

Understandability Enjoyment Attraction Relaxation Effort Tiredness

Older adults IMI score 0.576** 0.348* 0.135 0.508** −0.562** − 0.649**

Young adults IMI score 0.342* 0.520** 0.302* 0.661** −0.568** −0.724**

Table 7  Correlations between each item score and the VBBT score

* Significant correlation p < 0.05
** Significant correlation p < 0.001

Understandability Enjoyment Attraction Relaxation Effort Tiredness

Older adults VBBT score 0.268 0.265 0.046 −0.087 −0.134 − 0.169

Young adults VBBT score 0.125 0.435** −0.129 0.195 −0.042 −0.197
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nerve action potentials slowdown in old age [49–51]. 
Decreased and diminished signals experienced by older 
adults experienced are important for signaling object 
friction, object slippage, and grasp force magnitude [52, 
53]. A haptic-feedback system was used to provide sen-
sory information about the size, texture and stiffness 
of the virtual object as well as to simulate the feeling of 
grasping in our study. A larger grasping force in older 
adults was considered to reflect a motor strategy that 
compensated for changes in haptic perception because a 
larger grasp force may secure virtual objects in people’s 
control for a wide range. In this case, the dexterity and 
manual speed in VR manipulation may be compromised 
due to the increased muscle activation levels required to 
produce the additional force [54]. Furthermore, excessive 
force will have the further effect of reducing smoothness 
in motor control [55, 56]. Previous empirical researches 
have demonstrated decreases in prefrontal cortex gray 
matter volume [57, 58], deteriorations in frontal and 
parietal white matter [59, 60] and reduced levels of neu-
rotransmitters [61–63] in older adults which lead to a 
decline in cognitive skills. a previous study reported that 
trajectory length is the only kinematic parameter that 
can reflect cognitive abilities, including motor planning 
and executive abilities [64]. Longer trajectories represent 
less precise movement to the target [41]. This suggests 
that control of precision during VR manipulation should 
be considered at the level of cognitive decline in older 
adults.

Regression results revealed that the performance in VR 
manipulation was predicted by the velocity and trajectory 
length, accounting for 64.0% of the variance in the VBBT 
score among young adults. While 65.6% of the variance in 
the VBBT score was significantly predicted by the num-
ber of velocity peaks in older adults. This suggested that 

VR use in older adults was mainly associated with the 
movement smoothness reflected by the number of veloc-
ity peaks, which may be caused by the increased noises 
in movement execution leading to increased submove-
ments [65–68] in the motor output stage. While in young 
adults, performance in VR use involves both motor skills 
and specific cognitive abilities, such as the optimized tra-
jectory ability [41, 69]. Therefore, the decreased move-
ment smoothness in older adults is a critical obstacle 
for VR manipulation. It demonstrated that movement 
smoothness should be taken into consideration when VR 
systems were designed for the elderly.

High IMI scores were found in both young and older 
adults, which might be due to the characteristics of VR 
[70]. A head-mounted display, for example, was experi-
enced as particularly motivating for older adults. Differ-
ences in each item and total IMI scores were significant 
in older and young adults. Compared to young adults, 
a lower score on the understandability item was found 
in older adults. The results of the informal interviews 
showed that older adults who were seldom exposed to 
VR in their daily life were unable to easily understand the 
VR task, while most young adults experienced VR use 
more frequently than older adults. It was unexpected that 
older participants felt more relaxed and less tired than 
the young participants, although older participants pro-
duced larger forces for grasping and longer trajectories 
for block movement. Such experiences can be explained 
by researchers that a higher interest makes activities feel 
relatively tireless and relaxing regardless of much effort 
[71–73]. Furthermore, the correlation analysis revealed 
that understandability was an important experience for 
high intrinsic motivation in older adults, compared to 
young adults who regarded enjoyment as a more impor-
tant motivation. It suggested that VR systems specified 

Fig. 5  Correlations between IMI score and VBBT score. a Correlations between IMI score and VBBT score in older adults. b Correlations between IMI 
score and VBBT score in young adults
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for older adults should be easy to understand. The VBBT 
score could be regarded as a utilitarian index, which was 
defined in the literature [74]. In line with previous find-
ings [75], we found that older adults prioritized intrin-
sic motivation (e.g., quality of experience) in the VR use 
while the utilitarian index was more important for young 
adults.

Our study presented the differences in motor, percep-
tive and cognitive abilities as well as intrinsic motivation 
in VR use between older and young adults. These find-
ings will be helpuful to determine what should be con-
sidered when designing VR systems for older adults. 
However, several limitations of this study should be 
addressed. First, we did not recruit older adults with cog-
nitive impairment or frailty. With the aging population, 
the prevalence of such older adults is increasing [76, 77]. 
We will recruit older adults with cognitive impairment 
or frailty in a future study. Another limitation is that we 
only used the VBBT to evaluate the performance of VR 
use. The VBBT was designed based on the BBT, which 
is a classic assessment for manual dexterity. We plan to 
examine the performance of older adults in VR use based 
on more varied VR scenarios and systems.

Conclusions
This study showed differences in task performance, 
motor, perceptive and cognitive abilities as well as intrin-
sic motivation for VR use between older and young 
adults. The findings demonstrated that movement 
smoothness in motor skills was the predictor of VR per-
formance in older adults, while in young adults, move-
ment speed, motor plan and executive abilities were the 
main predictors. Understandability played an important 
role in the intrinsic motivation of older adults for VR 
use, while for young adults, enjoyment was important 
for the intrinsic motivation. This finding demonstrated 
that when developing VR applications for older adults, 
age-related differences in upper limb motor performance 
and intrinsic motivation in VR use should be taken into 
consideration.
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