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Abstract 

Background During biological aging, significant metabolic dysregulation in the central nervous system may lead 
to cognitive decline and neurodegeneration. However, the metabolomics of the aging process in cerebrospinal fluid 
(CSF) has not been thoroughly explored.

Methods In this cohort study of CSF metabolomics using liquid chromatography‑mass spectrometry (LC–MS), fast‑
ing CSF samples collected from 92 cognitively unimpaired adults aged 20–87 years without obesity or diabetes were 
analyzed.

Results We identified 37 metabolites in these CSF samples with significant positive correlations with aging, includ‑
ing cysteine, pantothenic acid, 5‑hydroxyindoleacetic acid (5‑HIAA), aspartic acid, and glutamate; and two metabo‑
lites with negative correlations, asparagine and glycerophosphocholine. The combined alterations of asparagine, 
cysteine, glycerophosphocholine, pantothenic acid, sucrose, and 5‑HIAA showed a superior correlation with aging 
(AUC = 0.982). These age‑correlated changes in CSF metabolites might reflect blood–brain barrier breakdown, neu‑
roinflammation, and mitochondrial dysfunction in the aging brain. We also found sex differences in CSF metabolites 
with higher levels of taurine and 5‑HIAA in women using propensity‑matched comparison.

Conclusions Our LC–MS metabolomics of the aging process in a Taiwanese population revealed several significantly 
altered CSF metabolites during aging and between the sexes. These metabolic alterations in CSF might provide clues 
for healthy brain aging and deserve further exploration.
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Introduction
Over the past 60 years, improvements in healthcare and 
a booming economy have led a marked increase in the 
average human lifespan by almost 23 years [1]. According 
to the latest World Population Ageing Report published 
by United Nations, the size of the population aged above 
65 will increase by 120% from 0.7 billion in 2019 to 1.5 
billion in 2050, and 64% of the aged population in 2050 
will be living in Asia [1]. Progressive metabolic dysregula-
tion is a generalized hallmark of biological aging. Because 
the brain metabolizes approximately one-quarter of sys-
temic glucose for energy production but constitutes only 
2% of body weight, these metabolic changes may have 
an exaggerated presentation in the brain [2]. With aging, 
there is an exponential risk of cognitive decline and neu-
rodegenerative diseases. Common neurodegenerative 
diseases caused by accumulated misfolded protein aggre-
gates, such as Alzheimer’s disease (AD) and Parkinson’s 
disease (PD), have become a major challenge for the next 
generation, and unfortunately, there is almost no curative 
treatment to date. Therefore, obtaining deeper insights 
into the healthy aging process in the brain and exploring 
novel strategies to achieve healthy brain aging and pre-
vent neurodegenerative diseases are urgently needed [3].

During brain aging, dysregulated bioenergetics, neuro-
plasticity, and neuroinflammation contribute to the risk 
of cognitive decline and neurodegenerative disorders [4]. 
Age-related accumulation of oxidative stress may lead 
to functional decreases in cerebral energy metabolism, 
including glucose transport, mitochondrial oxidative 
phosphorylation, DNA repair, and redox regulation [4]. 
Brain hypoperfusion and blood–brain barrier (BBB) leak-
age in elderly individuals can contribute to diminished 
nutrient import and toxin removal, leading to cognitive 
decline [5–7].

Aging-related degradation of molecular and cellular 
processes contribute to genome, proteome, and lipidome 
instability, and the minor changes of these upstream 
molecules can cause significant metabolite alterations 
[8]. Because perturbations in metabolic pathways can 
be one of the first measurable alteration before disease 
manifestations, metabolomics can be used to charac-
terize the dynamic biological aging processes. Previous 
aging-related metabolomic studies of various biofluids, 
such as blood samples (serum or plasma), urine, and 
saliva, obtained from model organisms and humans 
demonstrated that aging-related metabolites are mostly 
associated with carbohydrates, lipids, amino acids, DNA 
repair, and redox metabolism [9–11]. For example, a 
plasma-based metabolomics analysis of the aging pro-
cess showed that ceramide, fatty acids, methionine, and 
nitric oxide pathways are associated with healthspan in 
healthy adults [12]. Age-specific metabolic fingerprints 

differ significantly by sex, with a substantial athero-
genic transition overlapping menopause in females [13]. 
A large-scale (26,050 adults) Northern European study 
on the effects of age, sex, and menopause using serum 
metabolomics found that menopause status is associated 
with significant amino acid and lipid alterations, which 
might contribute to future metabolic and cardiovascular 
risks in females [13]. Different rates of cognitive decline 
and brain atrophy between men and women have been 
observed in patients with AD, but whether that sex differ-
ences in brain aging trajectories exist during the process 
of healthy human brain aging requires further explora-
tion [13, 14].

Cerebrospinal fluid (CSF) is an appropriate biospeci-
men for analyzing the aging of the central nervous system 
(CNS), because CSF interacts closely with CNS tissue 
and its composition can reflect brain-specific metabo-
lite alterations during aging. CSF exchanges metabolites 
between the cerebral and systemic circulation; however, 
the specialized tight junctions of the BBB limit transcel-
lular transport in the CNS [15]. Although CSF has been 
profiled in the context of various neurological diseases to 
provide novel insights into disease mechanisms, the CSF 
metabolomics of the healthy aging process has not been 
thoroughly explored [16, 17]. The earliest CSF metabo-
lomics analysis of normal individuals was conducted in 
2010 in a small study of 10 adults that compared CSF 
proteomics and metabolomics and found high metabo-
lomic variation among individuals [18]. A recent small 
Swedish study using liquid chromatography mass spec-
trometry (LC–MS) to explore CSF metabolomics during 
healthy aging found several aging-related metabolites, 
but further larger cohort studies are required because 
of the small number of cases (23 individuals) and lim-
ited patient information (claimed healthy but no medical 
examination) [19]. Our previous nuclear magnetic reso-
nance (NMR) metabolomic study showed that the CSF 
alterations in citrate, lactate, leucine, tyrosine, and valine 
had a good correlation with the aging process [20]. To 
further quantify the delicate metabolic alterations during 
healthy brain aging, we conducted this LC–MS metabo-
lomic study in a larger population of cognitively healthy 
patients to profile the metabolic alterations in CSF during 
aging and between sexes.

Materials and methods
In the current metabolomic study, the LC–MS metabo-
lomic profiles of CSF samples collected from cogni-
tively healthy patients were analyzed to examine the 
metabolomic alterations during the aging process and 
between different sex. This clinical study was deposited 
in the Clinical Trials Registry (ClinicalTrials.gov Iden-
tifier: NCT04315038, first registered on 19/03/2020) 
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and approved by the Institutional Ethical Review Board 
(approval number: 201801931A3). We have explicitly 
explained the study protocol to every participant before 
enrollment into the study, and written informed consent 
was obtained after explanation.

Study population
We enrolled adult participants who were cognitively 
healthy (without neurological or psychiatric diseases) 
and were receiving optional spinal anesthesia for elec-
tive surgery at Linkou Chang Gung Memorial Hospital, 
a tertiary medical center in Northern Taiwan. The study 
participants were divided into three groups by age: young 
(age 20–39  years), middle-aged (40–59  years), and old 
(aged ≥ 60  years). The three-age group classification has 
been applied in previous LC–MS metabolomic study of 
human aging [21]. Patients with a history of diabetes and 
obesity were excluded from the final analysis because 
insulin resistance in these patients could confound the 
metabolite alterations [22]. From June 1, 2019 to March 
31, 2020, a total of 100 participants completed the initial 
screening and underwent CSF sampling for metabolomic 
analysis. All participants were admitted for elective uro-
logical or orthopedic surgeries and fasted for ≥ 8 h before 
CSF sampling.

Cognitive evaluation was based on preoperative assess-
ment and the exclusion of neurological or psychiatric 
diseases; thus, mild cognitive impairment might have 
been overlooked. After the initial evaluation, we excluded 
eight participants with a body mass index (BMI) > 30 kg/
m2 or a fasting blood glucose > 126  mg/dL from the 
analysis because these patients were considered obese 
or diabetic, respectively, according to diagnostic criteria 
[23]. The final cohort consisted of 34, 31, and 27 patients 
in the young, middle-aged, and old age groups, respec-
tively. Demographic characteristics, including age, sex, 
body height, body weight, and laboratory examination 
results, were recorded and compared. Other biochemical 
data, such as plasma glucose and serum creatinine levels, 
were recorded from the laboratory results before CSF 
sampling.

Collection of CSF samples
The CSF collection procedures were largely the same as 
that described in our previous NMR metabolomic study 
[20]. After obtaining informed consent, we collected CSF 
samples during the routine spinal anesthesia procedure 
using a 26-gauge spinal needle at the L3–L4 or L4–L5 
interspace. After free flow of clear CSF from the spinal 
needle, 1.2  mL of CSF was drained into a polypropyl-
ene tube, aliquoted, and stored at -80  °C until analysis. 
No immediate complications or patient discomfort were 
reported during CSF sample collection.

Sample preparation and non‑targeted LC–MS 
metabolomics
The CSF samples (50 μL) were mixed with cooled metha-
nol (200 μL) to precipitate proteins. After centrifugation 
at 12,000 × g for 15 min, the supernatant was transferred 
to nitrogen gas for drying. The residue was suspended in 
200 μL of 50% acetonitrile for LC–MS analysis.

Liquid chromatographic separation was conducted 
on an ACQUITY UPLC BEH Amide column (1.7  μm, 
2.1 × 150  mm; Waters, Milford, MA, USA) using an 
ACQUITY TM Ultra Performance Liquid Chroma-
tography (UPLC) system (Waters Corp.). The column 
was maintained at 45  °C, and the flow rate was 0.4 mL/
min. The mobile phase consisted of 0.1% formic acid in 
water (phase A) and acetonitrile containing 0.1% formic 
acid (phase B). Mass spectrometry was performed on a 
Waters Q Tof–MS (SYNAPT G2S; Waters MS Tech-
nologies, Manchester, UK) operated in ESI positive and 
negative ion modes. The scan range was 50–1000  m/z. 
The desolvation gas flow rate was 800 L/hr at 500 °C. The 
source-cone voltage was set to 25 V. The capillary voltage 
was 2.5 kV in positive mode and 2 kV in negative mode. 
The lock mass was leucine encephalin (m/z: 120.0813 
and 556.2771 for positive mode and m/z: 236.1035 and 
554.2615 for negative mode).

Statistical analysis
Finally, 162 CSF compounds were identified by LC–MS 
using an in-house library of CSF samples. The in-house 
library of CSF samples was set up by standard metabolite 
annotation or MS/MS fragment verification. Metabolite 
annotation was performed using accurate mass, reten-
tion time, and MS/MS criteria. Raw data can be obtained 
from the corresponding author. Of the 162 compounds, 
37 CSF metabolites could be characterized using the 
CSF metabolome database of the Human Metabolome 
Database (HMDB) with high confidence [24]. Further 
multivariate analysis such as orthogonal projections 
to latent structures-discriminant analysis (OPLS-DA) 
model was performed using SIMCA-P + software (ver-
sion 13.0; Umetrics, Umea, Sweden) under Pareto scal-
ing. We utilized the variable Y of each metabolite from 
the constructed OPLS-DA model as the LC–MS signal 
integration to compare their metabolite abundance and 
calculate the Akaike information criterion (AIC) and 
area under the curve (AUC) for further fitting compari-
son. We then applied MetaboAnalyst 5.0, an online ana-
lytic tool, for metabolomic analyses, including heatmaps, 
enrichment analysis, and pathway analysis [25].

The recorded data are expressed as means ± SD for 
continuous variables and percentages for qualitative vari-
ables (sex and diseases). The statistical analyses in our 
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study were based on the acquired LC–MS signal integra-
tion of each metabolite, and data were compared using 
Student’s t-test or χ2 tests (for two-groups) and analysis of 
variance (ANOVA) (for multiple groups). The between-
group differences of a specific metabolite were compared 
using the OPLS-DA coefficients of the LC–MS signals, 
and the variables in the OPLS-DA score plots were com-
pared using goodness of fit  (R2X,  R2Y, and  Q2).

In this study, CSF metabolite profiling of cognitively 
healthy adults of different age groups was the primary 
outcome. The aim of this analysis was to identify CSF 
metabolites that could discriminate between the young 
and old age groups, and then calculate the correlation 
between metabolite abundance and aging using a regres-
sion model. Metabolites with significant discrimination 
between the old and young groups were selected to con-
struct metabolite combinations; those combinations with 
lower AIC values, higher AUC values, or higher odds 
ratios (ORs) were selected to evaluate their discrimina-
tion of these two age groups. Between-group compari-
sons were adjusted for sex, BMI, serum creatinine level, 
and medical history of hypertension since these variables 
had significant between-group differences in the demo-
graphic comparisons. As the aging process might differ 
between the sexes, we calculated the correlation of each 
metabolite with aging in male and female adults. The 
secondary outcome was metabolite comparison between 
different sex. We made a 1:1 propensity-score matched 
comparison between male and female adults by match-
ing participants by age, BMI, serum creatinine level, and 
hypertension, and then compared their differences in 
metabolite abundance between male and female adults. 
All statistical analyses were performed on SAS software 
(version 9.4; SAS Institute Inc., Cary, NC, USA), and a 
two-sided p value less than 0.05 was defined as statisti-
cally significant.

Results
Study patient demographics
Our final cohort included 92 patients, which were divided 
into the following three age groups: young (n=34), 
middle-aged (n=31), and old (n=27) groups. The study 
protocol is shown in Fig.  1. Basic between-group com-
parisons of the demographic and biochemical parameters 
are shown in Table 1. Basic demographic comparison of 
the young, middle-aged, and old age groups showed that 
patients in the old age group had significantly higher 
BMI, serum creatinine level, and percentage of medi-
cal history of hypertension than those in the other age 
groups. We adjusted for these significant variables in 
subsequent between-group comparisons.

OPLS‑DA score plots of LC–MS signal integrations
The OPLS-DA score plots of the LC–MS signals 
between age groups are shown in Fig.  2. The OPLS-
DA score plots (Fig. 2B) showed a clear discrimination 
between the old and young groups in the CSF samples 
(reliability:  R2X = 0835,  R2Y = 0.736,  Q2 = 0.515).

Comparison of old and young patients
Comparison of the LC–MS signal integration of CSF 
samples between the young and old groups is shown 
in Table 2, and comparisons between the other groups 
are listed in Supplementary Table 1. The LC–MS signal 
integration for the old age group showed significantly 
higher levels of pantothenic acid, 5-hydroxyindoleacetic 
acid (5-HIAA), sucrose, glutamate, and 2-hydroxyglut-
arate (2-HG) compared to the levels in the young group 
(adjusted fold change > 1.2, p < 0.05). The old age group 
had lower levels of asparagine and glycerophosphocho-
line than the young group. These age-related metabolite 
alterations were visualized in a boxplot for metabolite 
comparison between young, middle-aged, and old age 
groups according to LC–MS signal integrations (Sup-
plementary Fig.  1). The metabolite heatmaps of these 
metabolite differences in the young, middle-aged, and 
old age groups are shown in Supplementary Fig. 2.

Correlation between metabolite abundance and aging
The correlations of the  log2 transformed metabolite 
abundance with age are listed in Table  3. Cysteine, 
pantothenic acid, 5-HIAA, glutamate, aspartic acid, 
pseudouridine, sucrose, and 2-HG were positively 
correlated with age (adjusted r > 0, p < 0.05), whereas 
α-ketoglutarate (α-KG), glutamine, serine, glycerophos-
phocholine, and asparagine were negatively correlated 
with age (adjusted r < 0, p < 0.05). Figure 3 shows scatter 
plots of the  log2 transformed metabolite abundance and 
their specific correlations within the three age groups. 
To identify aging-correlated biomarkers in the cerebral 
circulation, we constructed metabolite combinations 
using CSF metabolites with significant discrimination 
between young and old patients. We then compared the 
AIC and AUC values and adjusted ORs of these combi-
nations for discriminating between the young and old 
age groups utilizing stepwise ANOVA and multivari-
ate analysis, and the results are shown in Table 4. The 
combination of asparagine, cysteine, glycerophospho-
choline, pantothenic acid, sucrose, and 5-HIAA had 
comparatively lower AIC values, significant adjusted 
ORs, and the highest AUC (0.982) for discriminating 
between the young and old age groups.
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Correlation of metabolite abundance with aging 
between the sexes
The aging process might differ between males and 
females; therefore, we divided our cohort according 

to sex, and the demographic comparison is shown in 
Table  5. We then calculated the correlation between 
metabolite abundance and aging for the two sexes 
(Table 6). More metabolites were significantly correlated 

Fig. 1 Flow chart for the study design and group separation

Table 1 Demographic comparison among young, middle‑aged, and old patients

NA Non-applicable
# p value was calculated using Chi-square test for categorical variables and the analysis of variance (ANOVA) for continuous variables
* p < 0.05

Group in CSF Young (20–39 y/o) 
(n = 34)

Middle (40–59 y/o) 
(n = 31)

Old (60–87 y/o) (n = 27) p value#

Male sex, N(%) 4 (11.76%) 7 (22.58%) 10 (37.04%) 0.065

Age (mean ± SD, years) 29.35 ± 6.03 48.39 ± 5.55 68.67 ± 6.08  < 0.001*

BMI (kg/m2) 21.05 ± 2.61 22.42 ± 2.78 24.59 ± 2.56  < 0.001*

Fasting blood glucose (mg/dL) 92.11 ± 3.22 98.33 ± 5.86 109.67 ± 20.30 0.525

Serum creatinine (mg/dL) 0.61 ± 0.16 0.64 ± 0.16 0.74 ± 0.26 0.028*

Hypertension 0 (0%) 1 (3.23%) 11 (40.74%)  < 0.001*

Hyperlipidemia 0 (0%) 2 (6.45%) 0 (0%) 0.195

Obesity 0 (0%) 0 (0%) 0 (0%) NA
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with aging in women than in men, and some metabo-
lites had significantly positive correlations with aging in 
both sexes, including 5-HIAA, aspartic acid, cysteine, 
and pseudouridine. Scatter plots of the  log2 transformed 
metabolite abundance and their correlations with aging 
within the male and female groups is shown in Fig. 4.

Metabolite differences between males and females
To further compare the differences in CSF metabolites 
between males and females, we utilized propensity score-
matched comparison by 1:1 matching according to age, 
BMI, serum creatinine, and hypertension to eliminate 
these confounders. After propensity score matching, 
no obvious between-group differences were observed 
(Table  5). Between-sex comparisons of CSF metabolites 
are shown in Table  7. Female adults had significantly 

higher levels of hypoxanthine, 5-HIAA, and taurine than 
the matched males (fold change of  male/female  < 0.8, 
p < 0.05), and the boxplots of the propensity-matched 
between-sex comparisons are shown in Fig. 5.

Altered metabolic pathways in the cerebral circulation 
during aging
The metabolites that are altered during aging are mainly 
related to amino acids, lipids, neurotransmitters, and 
energy metabolism. Enrichment analysis of these altered 
metabolites showed significantly higher enrichment 
ratios for aminoacyl-tRNA biosynthesis, glutamine and 
glutamate metabolism, butanoate metabolism, and pan-
tothenate and CoA biosynthesis. Pathway analysis of 
these age-correlated metabolites showed higher correla-
tions with alanine, aspartate, and glutamate metabolism; 

Fig. 2 Orthogonal partial least‑squares discriminant analysis (OPLS‑DA) score plots in CSF samples obtained from (A) comparison between young, 
middle, and old patients (reliability:  R2X = 0.732,  R2Y = 0.320,  Q2 = 0.206). (B) young patients versus old patients (reliability:  R2X = 0.835,  R2Y = 0.736, 
 Q2 = 0.515). The OPLS‑DA plots show a clear separation between the young and old groups in CSF samples
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arginine biosynthesis; glutamine and glutamate metabo-
lism; and aminoacyl-tRNA biosynthesis. The involved 
metabolic pathways and their profiled metabolic changes 
during brain aging process of these age-correlated metab-
olites are depicted in Fig. 6. The significant aging-related 

changes in asparagine, glycerophosphocholine, cysteine, 
pantothenic acid, sucrose, serine, and 5-HIAA levels in 
fasting CSF samples suggest downregulation of cell mem-
brane, amino acid, and neurotransmitter metabolism and 
mitochondrial dysfunction in the aged brain.

Table 2 Comparison of CSF metabolites in young versus old patients

a p value was adjusted for sex, body mass index (BMI), hypertension, and serum creatinine. # p value was calculated using two sample t test. *p < 0.05

Metabolites in CSF LC–MS signal integration (mean ± SD) (× 103 a.u.) Adjusted fold change Adjusted p valuea#

Old Young Old/Young Old vs. Young

Increased metabolite levels in old patients compared to young patients
 Pantothenic acid 2287.78 ± 235.62 1300.62 ± 283.32 1.759 0.003*

 5‑Hydroxyindoleacetic acid 137.82 ± 10.14 81.14 ± 12.19 1.698  < 0.001*

 Sucrose 48.22 ± 3.98 36.43 ± 4.79 1.323 0.032*

 Glutamate 15.53 ± 0.94 12.42 ± 1.13 1.250 0.017*

 2‑hydroxyglutarate 97.29 ± 6.26 78.84 ± 7.53 1.234 0.033*

 Pseudouridine 355.90 ± 11.66 306.73 ± 14.02 1.160 0.002*

 Cysteine 35.29 ± 1.40 30.97 ± 1.69 1.140 0.025*

Decreased metabolite levels in old patients compared to young patients
 Isoleucine 4.25 ± 0.53 4.56 ± 0.64 0.932 0.667

 Asparagine 149.02 ± 7.57 184.07 ± 9.11 0.809 0.001*

 Glycerophosphocholine 63.04 ± 4.91 83.57 ± 5.90 0.754 0.002*

Table 3 Correlation of  log2 transformed CSF metabolite abundance with age within different age group

a Adjusted for sex, body mass index (BMI), hypertension, and serum creatinine
# r was calculated using regression model
* p < 0.05

Correlation of  log2 transformed metabolite abundance 
with age

All Young Middle Old

Significantly changed metabolites in CSF Adjusted ra# Adjusted ra# Adjusted ra# Adjusted ra#

Cysteine 0.385* 0.426* 0.333 0.123

Pantothenic acid 0.362* ‑0.116 0.045 0.413*

Glutamate 0.358* 0.462* 0.282 ‑0.028

5‑Hydroxyindoleacetic acid 0.337* ‑0.077 ‑0.051 ‑0.077

Aspartic acid 0.331* 0.584* 0.469* ‑0.086

Pseudouridine 0.322* 0.107 0.314 ‑0.042

Sucrose 0.317* 0.097 0.201 0.377

2‑hydroxyglutarate 0.289* 0.137 0.032 ‑0.161

Mannitol 0.284* 0.778* 0.196 ‑0.015

Cystathionine 0.218* ‑0.031 0.311 0.079

Taurine 0.082 0.159 0.145 ‑0.035

Isoleucine ‑0.021 0.125 0.069 ‑0.035

G1P ‑0.039 0.349 0.037 ‑0.442*

Lactate ‑0.173 ‑0.212 ‑0.302 0.100

Alpha‑ketoglutarate ‑0.221* ‑0.279 ‑0.578* ‑0.211

Glutamine ‑0.255* ‑0.300 ‑0.225 ‑0.053

Serine ‑0.322* ‑0.655* ‑0.095 ‑0.225

Glycerophosphocholine ‑0.339* ‑0.242 ‑0.224 ‑0.028

Asparagine ‑0.367* ‑0.224 ‑0.221 0.147
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Discussion
This prospective cohort study intended to profile the 
metabolomic signature in CSF during aging in cog-
nitively unimpaired Taiwanese adults using LC–MS. 

Metabolomic analysis of fasting CSF samples showed 
significantly higher levels of pantothenic acid, 5-HIAA, 
sucrose, glutamate, and 2-HG and lower levels of aspar-
agine and glycerophosphocholine in the old age group 

Fig. 3 Scatter plot of  log2 transformed metabolite abundance and its correlation with age in metabolites with significant correlation with aging. 
Value refers to  log2 transformed intensity and age is given in years. The colored zones refer to 95% confidence intervals of the regressions

Table 4 Association of altered CSF metabolite combinations for discriminating between the young and old age groups

AIC Akaike information criterion, OR Odds ratio
a Adjusted for sex, body mass index (BMI), hypertension, and serum creatinine
# Odds ratio was calculated using logistic regression model
* p < 0.05

Comparison Young vs. Old

Significantly changed metabolites in CSF AIC AUC Adjusted ORa# Adjusted p valuea

Pantothenic acid 64.688 0.845 1.000  < 0.001*

Cysteine 67.213 0.817 1.000 0.002*

5‑Hydroxyindoleacetic acid 69.629 0.786 1.000 0.002*

Pseudouridine 71.602 0.806 1.000 0.002*

Asparagine 71.692 0.776 0.999 0.002*

Glycerophosphocholine 72.392 0.783 0.999  < 0.001*

Sucrose 76.168 0.760 1.000 0.008*

Asparagine, Pantothenic acid 48.552 0.931 2.718  < 0.001%

Asparagine, Pantothenic acid, 5‑Hydroxyindoleacetic acid 39.861 0.959 2.718  < 0.001*

Asparagine, Cysteine, 5‑Hydroxyindoleacetic acid, Pantothenic acid 34.956 0.975 2.718  < 0.001*

Asparagine, Cysteine, Pantothenic acid, 5‑Hydroxyindoleacetic acid, Sucrose 34.597 0.979 2.718  < 0.001*

Asparagine, Cysteine, Pantothenic acid, 5‑Hydroxyindoleacetic acid, Sucrose, 
Glycerophosphocholine

34.655 0.982 2.718 0.001*
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than in the young group. The combination of aspara-
gine, cysteine, glycerophosphocholine, pantothenic acid, 
sucrose, and 5-HIAA was strongly correlated with aging, 
with an AUC of 0.982 to discriminate the old age group 
from the young group. We also found higher levels of 
taurine, hypoxanthine, and 5-HIAA in CSF samples from 
females than in CSF samples from males using a 1:1 pro-
pensity-score matched comparison. These aging-related 
CSF metabolites indicate decreased lipid, amino acid, 
neurotransmitter, and energy metabolism, suggesting 

possible BBB breakdown, neuroinflammation, and mito-
chondrial dysfunction in aged brain circulation.

This LC-MS metabolomic analysis of healthy aging 
is an extension of our previous NMR analysis of aging 
metabolomics.  The two most common metabolomic 
analytic methods are NMR spectroscopy and mass 
spectrometry-based metabolomics. While NMR spec-
troscopy can identify core metabolites in key metabolic 
pathways, mass spectrometry-based metabolomics can 
identify low abundance metabolites with wide detection 

Table 5 Demographic comparison between different sex

NA Non-applicable, BMI Body mas index
# p value was calculated using Chi-square test for categorical variables and the analysis of variance (ANOVA) for continuous variables
a matched with age, BMI, serum creatine and hypertension
* p < 0.05

Group in CSF Original 1:1 propensity‑matched  comparisona

Male (n = 21) Female (n = 71) p  value# Male (n = 21) Female (n = 21) p  value#

Age (mean ± SD, years) 55.90 ± 18.13 44.76 ± 15.95 0.007* 55.13 ± 17.01 55.50 ± 15.13 0.948

BMI (kg/m2) 23.88 ± 2.39 22.16 ± 3.05 0.019* 23.02 ± 1.85 24.10 ± 3.68 0.309

Fasting blood glucose (mg/dL) 101.13 ± 16.51 118.00 ± 14.14 0.225 103.23 ± 14.8 118.00 ± 14.14 0.276

Serum creatinine (mg/dL) 0.85 ± 0.24 0.60 ± 0.14  < 0.001* 0.78 ± 0.14 0.77 ± 0.16 0.872

Hypertension 7(33.33%) 5(7.04%) 0.005* 4(25%) 5(31.25%) 1.000

Hyperlipidemia 1(4.76%) 1(1.41%) 0.406 1(6.25%) 1(6.25%) 1.000

Obesity 0 (0.00%) 0 (0.00%) NA 0 (0.00%) 0 (0.00%) NA

Table 6 Comparison of altered CSF metabolites within different sex and their correlation with aging process

a Adjusted for body mass index (BMI), hypertension, and serum creatinine
# r was calculated using regression model
* p < 0.05

Metabolites in CSF Male Female

Log2 transformed LC–
MS signal integration 
(mean ± SD) (a.u.)a

Correlation of log2 
transformed abundance 
with age (ra#)

Log2 transformed LC–
MS signal integration 
(mean ± SD) (a.u.)a

Correlation of log2 
transformed abundance 
with age (ra#)

5‑Hydroxyindoleacetic acid 16.44 ± 0.14 0.570* 16.86 ± 0.09 0.328*

Cystathionine 11.14 ± 0.37 0.559* 11.51 ± 0.24 0.183

Aspartic acid 14.73 ± 0.15 0.551* 14.73 ± 0.09 0.279*

Cysteine 14.96 ± 0.08 0.547* 14.93 ± 0.05 0.343*

Pseudouridine 18.25 ± 0.06 0.517* 18.33 ± 0.04 0.277*

Glutamate 23.09 ± 0.04 0.448 23.11 ± 0.03 0.343*

2‑hydroxyglutarate 16.36 ± 0.11 0.459 16.44 ± 0.07 0.262*

Pantothenic acid 20.59 ± 0.17 0.258 20.80 ± 0.11 0.384*

Sucrose 15.26 ± 0.15 0.398 15.26 ± 0.09 0.245*

Mannitol 18.68 ± 0.09 0.316 18.66 ± 0.06 0.319*

Uric acid 18.59 ± 0.14 0.132 18.39 ± 0.09 0.161

Taurine 12.71 ± 0.24 ‑0.153 13.32 ± 0.15 0.159

Serine 17.45 ± 0.08 ‑0.376 17.76 ± 0.05 ‑0.261*

Glycerophosphocholine 16.15 ± 0.11 ‑0.368 16.08 ± 0.07 ‑0.314*

Asparagine 17.31 ± 0.08 ‑0.413 17.34 ± 0.05 ‑0.358*
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range and excellent sensitivity [11]. In our earlier publica-
tion on CSF metabolomics of aging using NMR platform, 
we found a combination of CSF metabolites of citrate, 
lactate, leucine, tyrosine, and valine correlated superi-
orly with aging, implying higher anaerobic glycolysis and 
mitochondrial dysfunction in the cerebral circulation 
during aging [20]. In this later performed LC–MS anal-
ysis of aging metabolomics in a largely different patient 

population (only 31 patients were both included in pre-
vious NMR and this LC–MS study), we identified more 
aging-correlated metabolites and had a different insight 
into healthy brain aging. In this study, we identified sev-
eral CSF metabolites that were positively correlated with 
the aging process (pantothenic acid, 5-HIAA, glutamate, 
aspartic acid, pseudouridine, sucrose, and 2-HG) and 
several that were negatively correlated with aging (α-KG, 

Fig. 4 Scatter plot of  log2 transformed metabolite abundance and its correlation with age within male and female group. Value refers to  log2 
transformed intensity and age is given in years. The colored zones refer to 95% confidence intervals of the regressions

Table 7 Comparison of CSF metabolites between male and female patients using 1:1 propensity‑matched comparison by matching 
with age, body mass index (BMI), hypertension, and serum creatinine

# p value was calculated using two sample t test
* p < 0.05

Metabolites in CSF LC–MS signal integration (mean ± SD) (× 103 a.u.) fold change p value #

Male Female Male/Female male vs. female

Increased metabolite levels in male patients compared to female patients
 Xylulose 5‑P 99.91 ± 19.54 86.14 ± 12.08 1.159 0.022*

Decreased metabolite levels in male patients compared to female patients
 Uric acid 470.37 ± 181.03 475.69 ± 235.73 0.988 0.943

 cysteine 31.94 ± 6.52 32.98 ± 7.06 0.968 0.661

 uridine 5252.33 ± 784.14 5958.56 ± 1208.74 0.881 0.059

 serine 179.38 ± 48.81 211.11 ± 50.56 0.849 0.081

 5‑hydroxyindoleacetic acid 95.72 ± 34.07 126.29 ± 42.50 0.758 0.032*

 Hypoxanthine 61.45 ± 14.11 85.24 ± 15.41 0.721 0.001*

 Taurine 7.95 ± 3.58 13.18 ± 5.91 0.603 0.005*
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Fig. 5 Boxplot for 1:1 propensity‑matched metabolite abundance comparison between male and female group. Propensity‑score matched by age, 
body mass index (BMI), hypertension, and serum creatinine
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glutamine, serine, glycerophosphocholine, and aspara-
gine). These metabolites are mainly carbohydrates, amino 
acids, and phospholipids, which are involved in cell 
membrane turnover, redox reactions, neurotransmitter 
metabolism, and mitochondrial respiration. The differ-
ence of identified aging-correlated metabolites between 
our previous NMR study and this current LC–MS 
analysis may be contributed by different metabolomic 
techniques, group classification, and diverse patient pop-
ulation. Combining the previous NMR and this LC–MS 
metabolomic results, we can have better comprehension 
of CSF metabolome and a deeper insight into the delicate 
regulation of glucose hypometabolism, BBB breakdown, 
neuroinflammation, and mitochondrial dysfunction dur-
ing brain aging.

Pantothenic acid, also known as vitamin B5, is the most 
altered metabolites in this LC–MS analysis. Pantothenic 
acid is an essential trace nutrient important for the syn-
thesis of coenzyme A, which plays an important role in 
the tricarboxylic acid (TCA) cycle, fatty acid metabo-
lism, acetylcholine, and myelin synthesis [26]. A recent 
nested case–control study of serum metabolomics found 
increased levels of free fatty acids, acylcarnitines, and 
pantothenic acid in patients with early cognitive decline 
over a 12-year follow-up [27]. Our finding of increased 

pantothenic acid in aging brains might be explained by 
enhanced acetyl-CoA transport to fuel dysfunctional 
mitochondria or an accumulation due to dietary intake of 
pantothenic acid in elderly patients [28].

5-HIAA is a major metabolite of serotonin. A previous 
CSF metabolomics study of subjects with AD and mild 
cognitive impairment found that these patients had ele-
vated levels of methionine and 5-HIAA [29]. Glutamate 
is an excitatory neurotransmitter that plays an impor-
tant role in cyclic adenosine monophosphate signaling to 
enhance insulin secretion [30]. Elevated oxidative stress 
in the elderly might reduce glutamine synthesis and 
impair the glutamate-glutamine cycle in astrocytes in 
the aging brain, leading to glutamate accumulation and 
subsequent neurodegeneration and cognitive dysfunction 
[31].

Cysteine, a non-essential amino acid, is metabo-
lized from the methionine and can be converted  to 
glutathione, an important antioxidant and free radical 
scavenger [32]. Cysteine inhibits mitochondrial respira-
tion by limiting intracellular iron bioavailability via an 
oxidant-based mechanism [33]. Increased cysteine lev-
els in the elderly may imply higher cysteine toxicity, a 
major driver of age-related mitochondrial dysfunction 
[33]. Aspartic acid racemization reflects age-dependent 

Fig. 6 A schematic diagram illustrates these profiled CSF metabolites change during brain aging process. These aging‑related 
CSF metabolomic change might suggest possible blood‑brain barrier(BBB) breakdown, neuroinflammation, and mitochodrial dysfunction in aged 
brain circulation. Metabolites marked in blue refer to those which decreased in the elderly, while metabolites marked in red refer to those which 
increased with increasing age



Page 13 of 16Liu et al. BMC Geriatrics          (2023) 23:217  

accumulation of abnormal proteins in various tissues and 
is correlated with the aging of long-lived proteins; thus, 
it might play an important role in aging-related diseases 
[34].

Pseudouridine, also known as the ‘fifth nucleotide’ of 
RNA, is an isomer of the nucleoside uridine and plays an 
important role in the metabolism of purine nucleosides, 
muscle amino acids, and organic acids [9]. RNA pseudou-
ridination is the most common post-transcriptional RNA 
modification that is dynamically remodeled in response 
to cellular stress and the regulation of mRNA pseudou-
ridine epitranscriptome is a potential pharmacological 
target for various human diseases [35]. A human urine 
metabolomics study of the aging process found a decline 
in pseudouridine levels in the elderly [9]. However, we 
found higher pseudouridine levels in CSF samples from 
older individuals; thus, the aging-related changes in 
CSF pseudouridine require further clarification.

2-HG is structurally similar to α-KG and is associated 
with tumorigenesis and neurological dysfunction [36]. 
2-HG extended the lifespan of C. elegans by binding to 
and inhibiting ATP synthase, thereby decreasing mito-
chondrial respiration and mTOR signaling [36]. Mutation 
of isocitrate dehydrogenase (IDH) in tumor cells resulted 
in conversion of α-KG to 2-HG; subsequent accumulation 
of 2-HG led to epigenetic dysregulation via inhibition of 
α-KG-dependent histone and DNA demethylase [36]. In 
our study, we observed elevated 2-HG accumulation with 
aging in human CSF samples, which might be attributed 
to decreased mitochondrial respiration in the aged brain. 
α-KG is a key metabolite in the TCA cycle and is involved 
in various fundamental cellular functions, such as colla-
gen synthesis, epigenetic regulation, and stem cell prolif-
eration. The levels of α-KG change upon fasting, exercise, 
and aging [37]. A recent study in C57BL/6 mice found 
that an α-KG-supplemented diet extended the lifespan of 
middle-aged female mice and increased the healthspan of 
both sexes [37]. Besides, α-KG extended the lifespan of 
C. elegans by inhibiting ATP synthase and TOR signal-
ing and suppressed chronic inflammation in female mice 
[37]. Decreased α-KG levels in the CSF of elderly suggest 
decreased mitochondrial oxidative phosphorylation in 
the aged brain.

Asparagine, a non-essential amino acid, is essen-
tial for the brain development and function, and an 
asparagine synthetase deficiency can lead to congenital 
microcephaly and neuronal damage [38]. Asparagine is 
converted to aspartate through deamination, which is a 
form of non-enzymatic post-translational modification 
and protein aging process that has been associated with 
neurodegenerative diseases [39]. The decreased aspara-
gine levels in the aged human CSF samples in our study 
might be explained by protein aging.

Glycerophosphocholine, a glycerophospholipid 
with choline as a headgroup, is the main component 
of biological membranes and is a reservoir for second 
messengers. Alteration of the glycerophospholipid 
composition of neural membranes may change neural 
membrane permeability and is correlated with neuro-
degenerative diseases [40]. A large-scale cohort study 
comparing 150 healthy individuals using non-targeted 
plasma LC–MS metabolomics revealed the levels of 
phospholipids (phosphocholine), phosphoserine, and 
prostaglandin changed with aging [11]. A recent sys-
tematic review of 39 studies on memory and gait 
decline with aging found that the five most age-corre-
lated plasma or serum metabolites were sphingolipids, 
fatty acids, phosphatidylcholines, amino acids, and 
biogenic amines [41]. These results suggest that lipid 
metabolism is closely associated with aging by affecting 
membrane permeability, energy metabolism, signaling 
pathways, and gene expression; the decreased glycer-
ophosphocholine in the CSF of the old age group in our 
study suggests defective cell membrane turnover and 
BBB breakdown in the aged brain.

The altered levels of asparagine, cysteine, pantothenic 
acid, sucrose, 5-HIAA, and glycerophosphocholine in 
the CSF samples of the older group in our study suggest 
decreased lipid, amino acid, neurotransmitter, and energy 
metabolism in the aged brain. A previous Swedish study 
of CSF metabolomics found significant positive associa-
tions between age and acetylcarnitine, glutarylcarnitine, 
hippurate, 5-hydroxytryptophan, isoleucine, ketoleucine, 
methionine, and pipecolate and negative correlations 
between age and methylthioadenosine and 3-methy-
ladenine [19]. A recent CSF metabolomic analysis of a 
cohort at Duke Medical Center, consisting of 129 healthy 
individuals, found 11 metabolites positively correlated 
with age (4-hydroxyphenyllactic acid, 7-methylxanthine, 
cysteine, guanosine, glutathione, gamma tocopherol, 
kynurenine, methionine, tryptophol, uric acid, and xan-
thine), and one metabolite negatively associated with 
age (3-O-methyldopa) [32]. Most of these age-correlated 
CSF metabolites are involved in amino acid metabolism 
or redox reactions, implying higher oxidative stress and 
defected oxidative phosphorylation in the aged brain 
circulation, which is in line with our CSF metabolomics 
results. Our profile of altered CSF metabolites during 
aging is somewhat different from those in previous publi-
cations. A possible explanation for this might involve dif-
ferences in patient selection, analytical technologies, and 
diverse populations.

Examining samples  from healthy adults is of para-
mount importance as it could help us understand the 
healthy aging process and how aging trajectories dif-
fer between the sexes, thus enabling us to identify 
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pathogenic phenomena and targeted therapeutics for 
neurodegenerative diseases. Exploring the sex differences 
between male and female adults was our secondary out-
come. Previous plasma metabolomics studies exploring 
sex differences in aging found that the significant differ-
ences between men and women could be attributed to 
five metabolic pathways: primary bile acid biosynthesis, 
lysine degradation, fatty acid biosynthesis, linoleic acid 
metabolism, and the pentose phosphate pathway [11]. 
Another small metabolomics analysis of human CSF 
from 32 cognitively healthy older volunteers found sig-
nificantly higher acylcarnitine levels in males and higher 
taurine levels in females [42]. Taurine, a major constitu-
ent of bile, has multiple biological functions, including 
conjugation of bile acids, antioxidation, osmoregulation, 
membrane stabilization, and modulation of calcium sign-
aling [42]. Taurine was also found significantly higher in 
females in several CSF metabolomic analyses, which is in 
line with our result [42, 43]. A Duke CSF metabolomics 
study found that men had significantly higher levels of 
cysteine, uric acid, and N-acetyl-serotonin, while women 
had significantly higher 5-HIAA levels [32]. The sex dif-
ference in 5-HIAA levels could reflect enhanced seroto-
nin transporter function and serotonin metabolism in 
the female brain [32]. Hypoxanthine, a purine deriva-
tive, is an intermediate in nucleic acid metabolism, and 
in humans, adipose tissue is a major source [44]. Sex dif-
ferences in cognitive decline and AD susceptibility have 
been reported; approximately two-thirds of patients with 
AD are women, and previous studies found a higher 
risk of AD in female mice [45, 46]. The sex difference in 
AD susceptibility might be correlated with age-related 
changes in female brains due to the metabolic effects of 
pregnancy and menopause, which might signal the hypo-
metabolic phenotype of AD [46]. In our CSF metabo-
lomic profiling of sex difference in aging, we found more 
metabolites that were significant correlated with age in 
females, which might be explained by more profound 
metabolic changes in female brains. The identified sex-
specific metabolites  in our study, i.e., higher hypoxan-
thine, taurine, and 5-HIAA levels in women, might be 
associated with higher levels of adipose tissue release, 
bile acid, and neurotransmitter metabolism in women.

Our CSF metabolomics analysis of cognitively healthy 
adults revealed decreased phospholipid, amino acid, 
neurotransmitter, and energy metabolism during aging, 
suggesting aging-related metabolic changes in BBB 
breakdown, neuroinflammation, and mitochondrial dys-
function, which is in line with previous studies on brain 
aging [47]. With better comprehension of CSF patho-
physiology, we could expand our understanding of the 
brain’s orchestrated regulation and develop novel strat-
egies to improve brain health during aging. Emerging 

findings suggest that to tackle these metabolic changes 
during brain aging, brain rejuvenating strategies, such 
as eliminating conditions with deleterious metabolic 
effects, including diabetes and obesity, and practicing 
intermittent bioenergetic challenges, such as intellectual 
activities, dietary energy restriction, and physical exer-
cise are needed [5]. Cell culture and animal model-based 
studies have shown that intermittent bioenergetic chal-
lenges can reactivate neuroplasticity, bolster mitochon-
drial respiration, and stimulate mitochondria biogenesis 
and autophagy [5]. Other brain rejuvenation strategies 
in model animals, such as heterochronic parabiosis or 
administration of young plasma seemed to restore brain 
function in aged mice [47]. A recent animal study found 
a novel strategy for restoring hippocampal myelination: 
infusion of young CSF, which restored oligodendrogen-
esis and rejuvenated the aged mouse brain via activation 
of oligodendrocyte progenitor cells by fibroblast growth 
factor 17 [48]. These studies indicate that we could 
improve brain health by preventing metabolic diseases 
and introducing intermittent bioenergetic challenges. 
Someday, we might even be able to restore brain neu-
rogenesis to rescue cognitive decline during brain aging 
and neurodegeneration.

To the best of our knowledge, this CSF metabolomic 
study is the first to profile the LC–MS metabolomic sig-
nature of healthy brain  aging  in the Asian population. 
Compared to previous CSF metabolomics studies, our 
metabolomic cohort has a homogeneous ethnicity, ade-
quate patient number, and case information [19]. Our 
CSF sampling methodology during spinal anesthesia ena-
bled us to detect real-time CSF metabolomic alterations 
without additional patient discomfort or risk. Addition-
ally, since we intended to determine the metabolomics 
profile during the healthy aging process, we minimized 
potential bias by excluding patients with cognitive prob-
lems, diabetes, and obesity and adjusting for significant 
confounders during comparison. Therefore, no extreme 
metabolite outliers were detected in our final LC–MS 
dataset, which enabled minimization of individual bias.

Although this study was metabolically well character-
ized, it had some limitations. First, we only collected CSF 
samples once from the study participants, so we could 
not compare matched metabolomic information from 
other samples, such as plasma or urine. In fact, it is not 
yet known whether the changes in the analyzed metabo-
lites represent neutral changes with age, sudden dynamic 
stress response, or merely individual variations. [11] 
Considering aging process as a continuous evolving phe-
nomenon, age-related changes may be better detected 
by a longitudinal correlational approach, and that longi-
tudinal follow-up recording is our next research project. 
Second, our enrolled participants had demographical 
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differences in sex, BMI, serum creatinine, and medical 
diseases between different groups, thus might compro-
mise the analysis even though these confounders have 
been adjusted  before comparison. Besides, due to the 
complex nature of aging process and many factors that 
could affect the dynamic CSF metabolome, such as exer-
cise, diet, lifestyle, sleeping, and medications, our results 
require further validation in larger cohort or further 
longitudinal-designed study to eliminate these confound-
ers. Third, our results of metabolomic profiling of the 
aging process in CSF samples might reflect the combined 
effects of metabolic dysfunction, decreased CSF turnover, 
and BBB breakdown in the aging brain circulation, but 
these individual variables could not be quantified due to 
methodological limitations.

Conclusions
In this cross-sectional cohort study of LC–MS metabo-
lomic profiling of human CSF samples from cognitively 
healthy adults in the Taiwanese population, we presented 
novel insights into metabolic dysregulation in cerebral 
circulation during aging. These identified CSF metabolite 
changes in aging process are involved in metabolism of 
lipid, amino acid, neurotransmitter, and mitochondrial 
respiration. The profiled aging metabolomic changes 
might imply defected cellular signalling, BBB breakdown, 
neuroinflammation, and mitochondrial dysfunction in 
the aging cerebral circulation. Furthermore, a combined 
CSF alteration of asparagine, cysteine, glycerophospho-
choline, pantothenic acid, sucrose, and 5-HIAA displayed 
a superior correlation with the aging process, which may 
provide clues for healthy brain aging and deserve further 
investigation for causal relationships.
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