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Abstract 

Background:  This study aimed to identify long-term frailty trajectories among older adults (≥65) and construct 
interpretable prediction models to assess the risk of developing abnormal frailty trajectory among older adults and 
examine significant factors related to the progression of frailty.

Methods:  This study retrospectively collected data from the Chinese Longitudinal Healthy Longevity and Happy 
Family Study between 2002 and 2018 (N = 4083). Frailty was defined by the frailty index. The whole study consisted 
of two phases of tasks. First, group-based trajectory modeling was used to identify frailty trajectories. Second, easy-
to-access epidemiological data was utilized to construct machine learning algorithms including naïve bayes, logistic 
regression, decision tree, support vector machine, random forest, artificial neural network, and extreme gradient 
boosting to predict the risk of long-term frailty trajectories. Further, Shapley additive explanations was employed to 
identify feature importance and open-up the black box model of machine learning to further strengthen decision 
makers’ trust in the model.

Results:  Two distinct frailty trajectories (stable-growth: 82.54%, rapid-growth: 17.46%) were identified. Compared 
with other algorithms, random forest performed relatively better in distinguishing the stable-growth and rapid-
growth groups. Physical function including activities of daily living and instrumental activities of daily living, marital 
status, weight, and cognitive function were top five predictors.

Conclusions:  Interpretable machine learning can achieve the primary goal of risk stratification and make it more 
transparent in individual prediction beneficial to primary screening and tailored prevention.
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Background
The frailty, a complex syndrome, is endorsed as “a med-
ical syndrome with multiple causes and contributors 
that was characterized by diminished strength, endur-
ance, and reduced physiologic function that increases 
an individual’s vulnerability for developing increased 
dependency and/or death” by American Federation 
for Aging Research [1]. Frailty is common in older 
adults, often accompanied by heterogeneous decline of 
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physiologic capacity [2]. Many assessment tools were 
used to define frailty in screening, the frailty pheno-
type and the deficit accumulation approach were rec-
ognized as two operational approaches [3]. The Fried 
frailty phenotype consists of five physical components: 
unintentional weight loss, self-reported exhaustion, 
weakness, slow walking speed, and low physical activ-
ity, the presence of three or more of above was identi-
fied as frailer [4]. The cumulative deficit approach is to 
calculate a continuous score named Frailty Index (FI), 
a ratio of the number of deficits present in the individ-
ual to the number of total deficits, ranging from 0 (no 
deficit) to 1 (all deficits present) to reflect the state of 
frailty. FI can be derived from epidemiological survey 
to describe the intrinsic onset and progression of physi-
ological decline in the aging process.

Worldwide, the evaluated prevalence of frailty was 
about 24%, based on the FI, among people aged over 
50 years old [5]. With an aging process, the prevalence 
is projected to increase. Older people living with frailty 
have an increased risk of falls, fractures, hospitalizations, 
thus would lower life quality, even lead to higher risk 
of disability and early mortality, bringing a substantial 
challenge to public health [6, 7]. Therefore, it is urgent 
to take effective strategies for frailty management, espe-
cially pragmatic screening. There emerging a large body 
of studies aimed to explore for early identification of 
frailty and it’s worth noting that frailty was recognized 
as a dynamic state, existing heterogeneity in population, 
with different initial manifestations often leading to dif-
ferent trajectories of frailty progression [6]. Many modi-
fiable risk factors such as lifestyles, medical resources, 
education, living condition, obesity, chronic disease, 
and physical inactivity were verified to be related to 
individual frailty trajectory [8–11]. So, it is significant 
to identify latent sub-populations of frailty trajectories, 
and examine their possible risk factors, which would be 
promising to realize tailored interventions, consistent 
with the advocation of precision prevention, treatment 
and management. However, in practice, it is still over-
looked to predict who will develop frailty more likely, 
whatever in the community or clinic [12]. With the 
rapid development of computer science, machine learn-
ing (ML) gradually comes into public insight, playing a 
crucial role in decision-making in all fields. It can deal 
with multidimensional data to give predictions about 
individuals beneficial to diagnosis, prognosis, and treat-
ment in clinic settings, proved superior to traditional 
methods [13, 14]. As we all know, things always go like a 
spiral, new challenges emerging in the progression from 
the maturity of algorithm to practical use. One of them 
is model interpretability, encountering with distrust and 
limited model application [15].

The study attempted to address the following issues: 
first, group-based trajectory modeling (GBTM) was used 
to describe individual heterogeneous frailty trajectories 
over a 16-year period among the 65+ adults of the Chi-
nese Longitudinal Healthy Longevity and Happy Family 
Study (CLHLS-HF). Second, we gave prediction of frailty 
trajectory with ML algorithms, namely logistic regression 
(LR), Naïve Bayes (NB), decision tree (DT), support vec-
tor machine (SVM), artificial neural network (ANN) and 
two ensemble learning methods of random forest (RF) 
and extreme gradient boosting (XGB) based on epide-
miological survey data. Third, we used SHapley Additive 
exPlanations (SHAP) to examine the key predictors and 
how they influenced the progression of frailty from global 
and local perspectives to promote tailored intervention 
strategies.

Methods
Study participants
Data was collected from the Chinese Longitudinal 
Healthy Longevity and Happy Family Study (CLHLS-
HF), a nationally representative social science survey, 
conducted by the Center for Healthy Aging And Devel-
opment Studies, National School of Development of 
Peking University [16], and was approved by the Insti-
tutional Review Board, Duke University (Pro00062871), 
and the Biomedical Ethics Committee, Peking Univer-
sity (IRB00001052–13074). All participants provided 
written, informed consent. The baseline survey was 
conducted in 1998 and the follow-up surveys were con-
ducted in 2000, 2002, 2005, 2008–2009, 2011–2012, 
2014 and 2017–2018 in randomly selected about half of 
the counties and city districts in 23 Chinese provinces 
consisting of older adults aged 65 and above and their 
children aged 35–64 [17].

The latest 6 waves targeted people aged 65 years and 
above were selected for analysis, the first 2 waves (1998 
and 2000) were excluded for only enrolling participants 
older than 80 years. Additionally, participants were 
restricted to be followed for at least 3 waves from the 
baseline of 2002 for analysis of frailty trajectories. Finally, 
4083 subjects were included. The follow-up information 
of CLHLS-HF and the sample selection of this study are 
presented in Supplementary Fig. S1.

Frailty assessment
We constructed FI following the standard procedure 
published by Searle et  al. [18] The FI in the current 
study was derived from major domains of health (i.e., 
ADLs, IADLs, cognition, functional limitations, and 
self-reported health) consisting of 38 items associated 
with adverse health outcomes [19]. We used the sum of 
deficit points that appeared in the individual to divide 
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the total number of deficits considered as an indica-
tor of FI. If there were missing items (allowed within 
1/3 of total items), then will be excluded from both the 
denominator and the numerator [20]. Ultimately, the FI 
scores were used to identify the potential trajectories of 
frailty in the current analysis. The description of items 
and coding instructions for the current study were listed 
in Supplementary Table S1.

Trajectories of frailty
In the field of medical research, there are many time-
dependent variables and developmental trajectory can 
describe the change of variables over time and dynami-
cally reflect the characteristics of these variables. Typi-
cal traditional methods including hierarchical modeling 
and latent curve analysis were commonly used to ana-
lyze developmental trajectories based on the continu-
ous distribution function [21, 22]. However, they usually 
obtained the average trajectory of the variables without 
the consideration of individual heterogeneity among the 
whole population. GBTM was known as a semi-para-
metric mixture model. The basic principle of GBTM is 
to fit model trajectories with polynomial functions of 
age or time and GBTM is mainly used to analyze lon-
gitudinal data to identify clusters of individuals with 
similar trajectories and subgroups with different trajec-
tory types [23]. In the present study, we extracted the 
relevant indicators from questionnaires in different fol-
low-up years to establish a repeated FI index, and age in 
follow-up years was defined as the timescale. According 
to prior study, we tried 1–6 trajectories with the poly-
nomial model (up to cubic model) to identify the latent 
subgroups of frailty trajectories [24]. The optimal num-
ber of subgroups was determined by the results of model 
fitting including Bayesian information criteria (BIC), 
Akaike’s information criterion (AIC) and the proportion 
of the smallest class (with more than 5% of all the par-
ticipants for generalization) [25]. AIC and BIC were used 
to measure the variation between predicted and true val-
ues by the fitting model and the lower value of AIC and 
BIC indicated better model fitting. Furthermore, individ-
ual was assigned to the class with the average posterior 
probability (APP) greater than 70% indicating the model 
had good fit. In the current study, GBTM was applied to 
identify the sub-group of frailty trajectories of the tar-
get population (N = 4083) with at least three waves of 
data from 2002 to 2018 in stage 1, describing variation 
within-person and groups. Given that the number of fol-
low-up waves toward FI may affect the formation of the 
frailty trajectory, we further described the trajectory of 
frailty development for the study subjects with complete 
six waves data (N = 617) to validate the stability of the 
trajectory results.

Measurement of predictors
Predictors of machine learning in this study covered soci-
odemographic characteristics, lifestyles, self-reported 
health, and objective examination. Previous study have 
confirmed that missForest outperforms other methods 
including k-nearest neighbor (KNN impute) and multiple 
imputation (MICE) in missing value imputation [26]. So 
in the current study, missForest was used to fill the miss-
ing values of variables. MissForest is a non-parametric 
missing value imputation method for mixed-type data 
involving continuous variables as well as categorical vari-
ables based on a random forest. The main principle of 
missForest is to address the missing data by training ran-
dom forest on observed values in the first step, then give 
prediction of the missing values iteratively. More detailed 
description of variables was presented in Supplementary 
Methods S1, and the measurements of variables were 
listed in Supplementary Table S2.

Feature selection
For pursuing model parsimony and excluding irrel-
evant variables related to health, feature selection was 
recognized as a good choice with avoiding over-fitting 
of prediction models [27]. We used recursive feature 
elimination (RFE) with 10-fold cross-validation based 
on random forest to select the most relevant features 
in the training dataset, ranking features by the measure 
of variable importance, iteratively eliminating the least 
important features, and re-fitting the model to search 
for optimal number of features remained in the model by 
repeating the process [28].

Machine learning classifiers
In this study, 7 machine learning methods including 
naïve bayes (NB), logistic regression (LR), decision tree 
(DT), support vector machine (SVM), artificial neural 
network (ANN), random forest (RF), and extreme gra-
dient boosting (XGB) were used to predict the frailty 
trajectories in stage 2. NB, a simple model based on the 
knowledge of probability theory and statistics. It is used 
to estimate the likelihood of things happening based 
on a priori knowledge [29]. LR, considered as a special 
case of a generalized simple linear model, can transform 
linear regression values into the range of (0,1) by the 
𝑠𝑖𝑔𝑚𝑜𝑖𝑑 function, and further the continuous regression 
is transformed into a binary classification task by setting 
a threshold. LR was usually selected as a base model for 
comparison [30]. DT is highly popular in medical deci-
sion making, and it is similar to a tree structure and con-
sists of a series of nodes and branches. The classification 
task is usually done by a series of rules starting from 
the root node. It can code with nonlinear relationships 
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among multiple variables and showed strong interpret-
ability by separating each branch of the tree into increas-
ingly smaller leaves based on various features [31]. SVM, 
favored with solid statistical theory, maps data to a higher 
dimension to find an optimal decision hyperplane that 
maximizes the separation between two classes of data, 
and it can overcome the problem of linear inseparability 
[32]. ANN, comprised of input units, hidden units, and 
output units, is one of a mathematical model belonged to 
deep learning, it can simulate the response mechanism 
of the human brain nervous system to external stimu-
lus. Neurons are the most basic units of data processing. 
First, data is entered into the input layer, the information 
is passed to each neuron in the hidden layer through the 
connection weights of each node. Next, the data is fur-
ther weighted, summed and transformed by the activa-
tion function. Last, the processed information is further 
fed to the output layer and further processed to be spe-
cific output. ANN is able to detect complex relationships 
between dependent and independent variables [33]. Les-
sons from previous studies showed that the performance 
of single weak model can be improved by combination of 
multiple learners, which was called ensemble methods. 
RF is one of the ensemble methods, known as bagging, 
and it consists of a number of decision trees in parallel, 
and the predictions are mostly voted by numerous deci-
sion trees [34]. XGB is a strong classifier of decision-tree-
based ensemble method by integrating multiple weak 
learners (boosting). It can prevent overfitting with com-
plexity regularization [35].

Derivation and evaluation of prediction models
For model development, we applied grid search to achieve 
hyperparameter optimization and to prevent overfitting 
[36]. Firstly, the datasets were randomly split into training 
set (70%) and test set (30%). In the training set, we com-
bined 10-fold cross validation and grid search to determine 
the best hyperparameters based on the best accuracy in 
validation set. Finally, the test set were subjected to 1000 
times bootstrap resampling for internal validation [37]. The 
model performance can be lowered by class imbalance, 
therefore,  synthetic minority over-sampling technique 
(SMOTE), combining oversampling with under-sampling, 
was applied for resampling by analyzing minority sample 
then adding new cases to dataset  in the training set [38]. 
Multi-dimensional metrics including discrimination, cali-
bration and clinical usefulness were considered [39]. In 
terms of discrimination, the evaluation metrics covered: 
(1) weighted precision, calculates precision  for each label, 
and then finding their average weighted values  (the num-
ber of true instances for each label), (2) weighted recall, 
calculates recall for each label, and then finding their aver-
age weighted values  (the number of true instances for 

each label), (3) balanced accuracy, calculates the   average 
of recall obtained on each class, which is suitable for class 
imbalance, (4) weighted F1 score, F1 score is the synthesis 
of precision and recall, and weighted result was calculated 
based on F1 score of each label, (5) area under the receiver 
operating characteristic curve (AUROC), ranging from 
0 to1, reflects the overall classification performance, the 
closer to 1, the more favored model performance. The brier 
score was used to examine both model discrimination and 
calibration [40], representing the differences between those 
predictions and their corresponding event scores. Obvi-
ously, the lower brier score, the better model accuracy. As 
for clinical usefulness, the decision curve analysis (DCA) 
was used to quantify the net benefit of model implemen-
tation in practice determined by the difference between 
the expected benefit and the expected harm with various 
threshold provided for clinical decision [41]. The whole 
work flow was shown in Fig. 1.

Machine learning interpretation
More sophisticated algorithm usually accompanying 
opaque deduced outcomes like a black box [42]. So we 
used SHapley additive explanations (SHAP) to help cli-
nicians and community workers better understand the 
model and promote the transition from model construc-
tion to practice. SHAP can tell the importance of various 
features from global aspect and peer into how every sin-
gle feature influence the outcome [43]. We further used 
restricted cubic spline to explore the association between 
significant predictors and rapid-growth frailty trajectory.

Statistical analysis
Continuous variables were presented by mean ± standard 
deviation for normal distribution or presented by median 
and inter-quartile range for skewed distribution. Categorical 
variables were given percentages. The differences of baseline 
characteristics among different trajectories were analyzed 
by t test or Wilcoxon test for continuous variables and chi 
square test or Fisher exact test for categorical variables. All 
the above analyses were performed by SPSS 25.0. Frailty tra-
jectories were identified by SAS 9.4.0. The process of predic-
tion was performed with Python 3.7.6. R (4.2.0) was applied 
to plot Restricted cubic spline (RCS). A 2-sided probability 
value of p < 0.05 was considered to be statistically significant.

Result
Heterogeneous trajectories of frailty
On inspection of Supplementary Table S3 and Table S4, 
2-class with both quadratic form showed relative lower 
BIC (14,639.21), and AIC (14,664.47), the proportion of 
smallest class was over 5% and the posterior probability 
for every group was more than 70%. Although, 1-class 
showed relatively lower value of AIC and BIC, it was 
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more significant to identify the heterogeneous frailty 
trajectories. Thus, two trajectories were identified for 
the development of frailty among older adults. Figure  2 
shows two longitudinal patterns of frailty, plotted by cur-
rent age at each visit, based on FI: class 1, “stable-growth” 
(n = 3370, 82.54%); class 2, “rapid-growth” (n = 713, 
17.46%). The detailed parameters and maximum likeli-
hood estimation for the final two-group trajectory model 
are summarized in Supplementary Table S4. The sensitiv-
ity analyses also identified similar frailty trajectories as 
shown in Supplementary Fig. S2.

Frailty index was generated based on the number of 
deficits present in an individual divided by the total num-
ber of deficits possible, ranging from 0 to 1. Two distinct 
trajectory classes were identified: “stable-growth”, “rapid-
growth”. Stable-growth described that the value of FI 
increased stably, rapid-growth captured that the change 
of FI increased unsteadily for long-term trend with a rela-
tive steep speed. The solid lines represent the means, and 
the dashed lines represent the 95% confidence intervals 
of the mean.

Baseline characteristics of study population
A total of 27 variables were selected by proposed RFE 
with ten-fold cross-validation (Supplementary Fig. S3). 

The average age was 77. 0 years of all selected subjects 
(n = 4083) and female accounted for 52.0%. 20.0% of 
them lived in city, 46.2% never received formal educa-
tion. 50.9% were in married and most of them were living 
with chronic disease. The baseline average MMSE, ADL 
and IADL scores were 27.22, 11.80 and 14.02 respec-
tively. Supplementary Table S5 shows the results of com-
parisons of baseline characteristics between analytical 
sample and drop-out sample among those aged 65 years 
or older in 2002. The comparisons of baseline character-
istics between the two trajectory classes are presented 
in Supplementary Table S6. The enrolled participants 
were more inclined to settle in rural, have relative lower 
level of education, have more alcohol consumption and 
a higher rate of living with arthritis and hypertension. 
In addition, they had a slightly higher economic status 
and much more frequent of entertainment activities. 
They performed better in cognition ability and  physical 
function.

Performance of prediction models
Table  1 presents the weighted  precision, 
weighted  recall, balanced accuracy, weighted F1 score, 
AUROC and brier score of ML algorithms in test set. 
The accuracy of all models ranges from 0.60 ~ 0.66. 

Fig. 1  Flow chart of the study. NB: Naïve Bayes; LR: Logistic regression; DT: Decision tree; RF: Random forest; SVM: Support vector machine; XGB: 
Extreme Gradient Boosting; ANN: Artificial neural network
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RF reached the best recall of 0.845, the best precision 
of 0.820 and the best F1 score of 0.816, respectively. 
Additionally, RF achieved 0.702 in AUROC and rela-
tive lower brier score of 0.143. Area under the receiver 
operating characteristic curves (AUCs) of all prediction 
models were presented in Fig. 3. Figure 4 presented the 
results of decision curve analysis for all models. Spe-
cifically, the net benefit of decision curve is the sum of 

the gain value of the intervention for the corresponding 
true-positive population at each threshold and the loss 
value of the intervention for the false-positive popula-
tion. All positive and all negative line represents the 
net benefit of providing screen for all subjects, assum-
ing that all subjects would be positive and negative 
respectively. The corresponding net benefits are vary-
ing under different thresholds. Our results showed that 

Fig. 2  Heterogenous trajectories of older adults satisfied with inclusion criteria for at least three waves (n = 4083)

Table 1  Performance of machine learning algorithms for frailty trajectories prediction

Note: NB Naïve Bayes, LR Logistic regression, DT Decision tree, RF Random forest, SVM Support vector machine, XGB Extreme Gradient Boosting, ANN Artificial neural 
network, Accuracy refers to balanced accuracy, Precision, Recall, and F1 score refer to the weighted results.

Accuracy Recall Precision F1 Score AUROC Brier Score

NB 0.645 (0.610, 0.680) 0.810 (0.787, 0.832) 0.802 (0.777, 0.827) 0.805 (0.782, 0.829) 0.722 (0.680, 0.764) 0.161 (0.143, 0.179)

LR 0.664 (0.627, 0.702) 0.701 (0.674, 0.728) 0.798 (0.773, 0.823) 0.733 (0.709, 0.757) 0.728 (0.687, 0.769) 0.205 (0.196, 0.213)

DT 0.612 (0.580, 0.643) 0.819 (0.798, 0.839) 0.794 (0.769, 0.820) 0.802 (0.779, 0.826) 0.612 (0.580, 0.643) 0.208 (0.202, 0.214)

RF 0.610 (0.580, 0.639) 0.845 (0.825, 0.864) 0.820 (0.794, 0.846) 0.816 (0.791, 0.841) 0.702 (0.659, 0.745) 0.143 (0.134, 0.151)

SVM 0.596 (0.560, 0.632) 0.723 (0.697, 0.748) 0.765 (0.737, 0.793) 0.740 (0.716, 0.765) 0.661 (0.619, 0.703) 0.181 (0.167, 0.195)

XGB 0.599 (0.580, 0.639) 0.833 (0.825, 0.864) 0.802 (0.794, 0.846) 0.806 (0.791, 0.841) 0.677 (0.659, 0.745) 0.134 (0.134, 0.151)

ANN 0.595 (0.563, 0.628) 0.796 (0.773, 0.819) 0.777 (0.750, 0.804) 0.785 (0.760, 0.810) 0.640 (0.595, 0.685) 0.193 (0.171, 0.215)
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if the threshold probability is higher than 10%, a cer-
tain intervention for the population identified as at risk 
under that threshold has more benefit than an interven-
tion for all subjects or no subjects at all. Generally, NB 
was superior to others in a wide range of thresholds.

Interpretability analysis of prediction models
Overall, RF model performed excellent in current 
study. So, we provided explanations for RF model by 
SHAP to help to learn how single variable contributed 
to a certain outcome and to examine crucial factors. 

Fig. 3  Area under the receiver operating characteristic curves (AUCs) of models

Fig. 4  Decision curve of prediction models and net benefit of each model. NB: Naïve Bayes; LR: logistic regression; DT: decision tree; RF: random 
forest; SVM: support vector machine; XGB: extreme gradient boosting; ANN: artificial neural network; All positive: the net benefit of providing screen 
for all subjects (all subjects would be positive); All negative: the net benefit of providing screen for all subjects (all subjects would be negative)
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SHAP was used to translate the predicted value of the 
model as the sum of the attribution values (shap val-
ues) of each input feature. According to summary plot 
(Fig.  5A), we can see the top 10 features with larger 
mean absolute of shape value from global measure, 
especially for physical function (IADL and ADL), mari-
tal status, cognition function and living with hyperten-
sion, they greatly determined the output of the model, 
which can be used as a reference for prevention. Fur-
ther, we gave single-prediction explanations by SHAP 
force plot to visualize the transition from base value to 
output value driven by single feature allowing for per-
sonalized decision-making. From the individual-level 

interpretability analysis of SHAP, we can see that each 
feature has its own attributed value, and that all attrib-
uted value drove the model’s predictions from the base 
value to the final model output. The horizontal axis 
position indicates the impact of each feature on output 
value. Features that increase the predicted value from 
base value were denoted by red block, while features 
that pushed the predicted value down from base value 
were denoted by blue block. Figure  5B and C showed 
single prediction for both truly positive and truly nega-
tive samples randomly selected from test set. Further, 
based on the restricted cube plot (Fig. 6), it is known 
that whatever decline in physical function or cognition 

Fig. 5  Interpretability analysis with SHapley Additive exPlanations. A Each row represents a feature, the x-axis represents the SHAP value. B Single 
prediction for sample randomly selected (true positive). C Single prediction for sample randomly selected (true negative)
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function will increased the risk of rapid-growth trajec-
tory of frailty, especially the decline in physical func-
tion was more sensitive to the frailty trajectory than 
cognitive function decline in line with global SHAP 
analysis. Being similar to the global interpretabil-
ity analysis of SHAP, the logistic regression (listed in 
Tables S7) results also implied that living with stroke/
cerebrovascular disease, hypertension, heart disease 
and physical function decline may increase the risk of 
frailty.

Discussion
According to the results of GBTM, two frailty trajec-
tories were identified and majority of the older adults 
will keep a relative stable growth of frailty trend in over 
16 years. Then we used machine learning to make predic-
tion of frailty trajectory with easily available predictors 
compared to blood biomarkers and imaging data. Our 
proposed machine learning models achieved high per-
formance in distinguishing the two types of frailty trajec-
tories with the AUCs closing to 0.7, indicating that ML 
could serve as a feasible screening tool, and our models 
were promising to be employed to give frailty trajectory 
prediction based on simple epidemiological data so as to 
identify older adults at high-risk and significant modifi-
able factors such as diet, daily activities and economic 
situation etc., which may facilitate early effective inter-
vention to delay or prevent the occurrence or progression 
of adverse event.

It is worthwhile to conduct further discussion on the 
inconsistency of model performance and clinical decision 
curves. Our results showed that RF performs relatively 
better in terms of discrimination and calibration met-
rics, but its clinical decision benefit was not the highest. 
In view of previous studies, discrimination and calibra-
tion analyses are the evaluation of the model accuracy 
independent to its clinical value [44]. Thus, we should be 

more cautious in making clinical decisions of prediction 
models. The SHAP summary plot showed that physical 
and cognition function, marital status, living with hyper-
tension, heart disease, stroke/cerebrovascular disease, 
suffering from childhood starvation, weight, and medi-
cal cost payer were top 10 important variables. In clinical 
decision-making, clinicians should prioritize treatment 
for physical function and cognitive function recovery and 
give essential consideration of co-morbid chronic dis-
eases. According to the analysis results, it is not difficult 
to find that the SHAP value and the odds ratios based 
on binary logistic regression identified several shared 
significant factors such as physical function including 
IADL and ADL, marital status, heart disease, hyperten-
sion, and stroke. However, some crucial factors such as 
MMSE appeared in SHAP analysis but its corresponding 
odds ratios were absence of statistical significance. The 
disparity may be derived by the prevalence of variables. 
The odds ratios are related to the distribution of variables 
in the population, whereas the SHAP values are the aver-
age impact across the whole population [45]. According 
to SHAP summary plot, IADL, ADL and MMSE are all 
the strong factors related to frailty consistent with the 
criteria of FI. Given the parameters including in FI were 
ongoing the absence of authoritative convention [46], our 
results put forward a proposal that FI can be calculated 
by assigning deficit accumulation distinct weights refer-
ence to feature importance. Thereby, physical function 
and cognition function cannot be ignored, timely screen-
ing should be implemented. Further, aging accelerated 
the progression of frailty despite the status of physical 
function. In turn, early intervention on frailty can help 
improve physical function and delay or prevent the onset 
of dependency.

There were some modifiable risk factors according 
to our findings such as less social activity, unhealthy 
lifestyle, poor dietary habit and adverse childhood 

Fig. 6  Restricted cubic spline (RCS), based on logistic regression to analyze the relationship between important variables including IADL, ADL and 
MMSE and frailty trajectory
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experiences which can be regard as prevention tar-
get to lower the risk of frailty worsening [46, 47]. It 
should be encouraged to carry out various social activi-
ties for older adults with more young people involved 
in community or nursing home, health education and 
health screening should also be implemented further. 
Additionally, older adults living with multimorbid-
ity were more vulnerable. However, nearly half of the 
patients showed a negative attitude towards the treat-
ment of chronic diseases, on the other hand, few clini-
cal decisions focus on the condition of multimorbidity, 
which suggested us that clinicians should evaluate the 
patient’s health comprehensively when making decision 
and establish good communication with patients to 
improve their compliance [48]. We also call for timely 
screening for cognitive decline, physical limitations and 
frailty in community and in clinic settings offering sug-
gestions in therapy.

All in all, the current study verified the potential of 
future projections that combining machine learn-
ing and available health data as no time-consuming 
screening tools to promote frailty assessment, pro-
vided reference to individualized, flexible prevention 
and treatment considering individual heterogeneity. A 
bunch of studies tried to achieve automatic diagnosis 
with ML algorithms, however lack of adequate explain-
ability made it a crucial barrier toward clinical use [49]. 
Our study incorporated ML model with SHAP making 
the prediction more transparent and reliable by giving 
explanation of risk variables and displaying individ-
ual prediction. Nevertheless, more modifiable factors 
related to frailty needed to be investigated, and fur-
ther shed in light whether early prevention could alter 
the trend of frailty, more importantly, how to translate 
from the research of secular trends in frailty to practice 
is a crucial challenge in future.

This study has some limitations that warrant discus-
sion. Firstly, the data was drawn from a retrospective 
national survey, implying loss to follow-up is inevita-
ble, so we applied missForest imputation approach to 
deal with the incomplete data. Although missForest 
performed better than mean value of variables, it can-
not eliminate the deviation rooting in data quality com-
pletely. Secondly, the sample size was relatively small, 
to solve this problem, we combined ten folds cross 
validation in training set and bootstrap resampling in 
test set to avoid overfitting and make full use of sample 
information. Thirdly, GBTM model was used to fit the 
frailty trajectory of the elderly population trying from 
groups of 1–6, and the final trajectory-group was deter-
mined by combining the model fitting results (AIC and 
BIC) and other evaluation metrics. According to our 
fitting results, single class showed the lowest values of 

AIC and BIC, but previous studies have examined the 
heterogeneity of frailty trajectories and distinguishing 
different categories of frailty trajectories makes more 
clinical significance for intervention treatment. Finally, 
2-group of frailty trajectory was selected. Fourth, the 
absence of more complicated information such as bio-
logical data may limit the model performance even 
wider model application. Moreover, further study 
should focus on external validation in a more general 
population to break down the barriers to the transfor-
mation from research to clinical practice.

Conclusion
This study described the progression of frailty and 
gave possible frailty prediction based on explain-
able machine learning. The results demonstrated the 
potential of machine-learning algorithms in identify-
ing higher-risk subgroup of frailty trajectories, which 
could benefit to optimize health resource utilization. 
Interpretability analysis could help health care provider 
to better understand and trust the possible pathway of 
precision prevention, treatment, and management of 
older adults in need.
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