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Abstract 

Background:  Disability poses a burden for older persons, and is associated with poor outcomes and high societal 
costs. Prediction models could potentially identify persons who are at risk for disability. An up to date review of such 
models is missing.

Objective:  To identify models developed for the prediction of functional status in community dwelling older 
persons.

Methods:  A systematic review was performed including studies of older persons that developed and/or validated 
prediction models for the outcome functional status. Medline and EMBASE were searched, and reference lists and 
prospective citations were screened for additional references. Risk of bias was assessed using the PROBAST-tool. The 
performance of models was described and summarized, and the use of predictors was collated using the bag-of-
words text mining procedure.

Results:  Forty-three studies were included and reported 167 evaluations of prediction models. The median c-statistic 
values for the multivariable development models ranged between 0.65 and 0.76 (minimum = 0.58, maximum = 
0.90), and were consistently higher than the values of the validation models for which median c-statistic values 
ranged between 0.6 and 0.68 (minimum = 0.50, maximum = 0.81). A total of 559 predictors were used in the models. 
The five predictors most frequently used were gait speed (n = 47), age (n = 38), cognition (n = 27), frailty (n = 24), 
and gender (n = 22).

Conclusions:  No model can be recommended for implementation in practice. However, frailty models appear to be 
the most promising, because frailty components (e.g. gait speed) and frailty indexes demonstrated good to excel-
lent predictive performance. However, the risk of study bias was high. Substantial improvements can be made in the 
methodology.
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Introduction
Disability is a key outcome for public health [1]. It is 
associated with a decrease in quality of life, increased 
use of healthcare resources, institutionalization and 

mortality in community dwelling older persons [2], and 
is therefore generally considered a primary outcome 
for intervention (e.g. strength and mobility programs). 
The high prevalence of multimorbidity and the onset 
of functional impairments in older persons, make this 
population particularly vulnerable for the development 
of disability in their instrumental and basic activities of 
daily living (ADL), e.g. shopping, walking, washing [3–5]. 
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Numbers vary substantially, but the incidence of disabil-
ity in instrumental and basic ADL in community dwell-
ing older persons ranges between 5% and 59% [6, 7]. The 
incidence is typically higher for instrumental ADL than 
for basic ADL [8], and also increases with age [9].

Decades of research have focused on identifying risk 
factors for disability in ADL in community dwelling older 
persons. Key risk factors include, among others, multi-
morbidity, frailty, cognition, depression, body mass index, 
physical activity, and sensory and physical impairments 
[10–14]. If modifiable, these factors can be the focus of 
interventions. Alternatively, they can be used to identify 
an individuals’ risk for disability or predict a score on a 
disability scale when incorporated in a prediction model. 
Prediction models can inform persons about their indi-
vidual prognosis (risk), can support older persons and 
healthcare professionals in the decision-making process, 
and can inform research designed to explore subgroups 
that respond better (or worse) to interventions that aim 
to improve functional status or prevent disability.

One systematic review, published in 2015, has previ-
ously investigated the utility of clinical prediction mod-
els for the outcome functional decline [15]. This review 
included 16 models in the evaluation and observed areas 
under the curve ranging between 0.63 and 0.78, thus 
indicating poor to moderate predictive performance of 
the models. However, this review had some limitations, 
e.g. only including short case finding instruments, only 
including instruments with validation, only consider-
ing decline in ADL as outcome. Also, a large number 
of studies have since been published. A second review 
investigated the association between frailty indicators 
and disability, and observed an important association 
between gait speed and disability [9].

We therefore performed a systematic review to identify 
models developed for the prediction of functional status 
in community dwelling older persons. We investigated 
the types of predictors that were included in the models, 
and how well the models predicted functional status.

Methods
A protocol for the systematic review was drafted before 
the start of the study (see appendix 1) and the PRISMA 
statement was used to structure the report of the study. 
[16]

Eligibility criteria
Studies had to include older persons, indicated by a mean 
sample age of 65 years or older, with the majority of the 
sample living at home.

Prediction models described in the studies had to pre-
dict the outcome functional status, defined as the abil-
ity to perform instrumental or basic ADL, and could 

include ADL scales (e.g. Katz scale) or specific aspects 
of ADL (e.g. washing or mobility). Physical performance 
outcomes were considered relevant if the reported data 
related to daily activities, e.g. ability to mobilise. Physical 
performance related to strength or speed was not consid-
ered for inclusion.

Predictions could include the prediction of ADL 
(scale or item score), or decline, maintenance, recovery 
or improvement in ADL (scale or item). The prediction 
model had to measure a single characteristic (univariable 
model) or a set of characteristics (multivariable model) 
to estimate a person’s individual prognosis and could 
include patient, care outcome and care process factors. 
The models could be presented in any format, e.g. as a 
statistical model, regression formula with coefficients, 
web or electronic application, nomogram, or score chart.

Studies with binary or survival outcomes had to report 
the concordance (c) statistic (which is equal to the area 
under the curve). Studies with continuous outcomes had 
to report the R2 statistic.

We included nested case-control studies, prospective 
and retrospective cohort studies (including database and 
registry studies), and secondary analyses of trials.

Information sources
We searched the Medline and EMBASE databases from 
inception up to March 2022 for eligible studies. After 
selecting the full text manuscripts, we screened ref-
erences lists and prospective citations (using Google 
Scholar) for eligible studies. Lastly, the ICTPR portal was 
searched for protocols and Web of Science for conference 
proceedings in order to track full text manuscripts.

Search
A search string was drafted using a combination of free 
text words and MeSH terms. The search terms were 
grouped according to outcome, prediction models, 
and setting. We used a validated search string for the 
terms related to the prediction models [17]. The terms 
related to the outcome and setting were derived from 
other systematic reviews, entry terms related to MeSH 
term, thesaurus searches for synonyms, and key words 
from published manuscripts. The final search string was 
adapted to the EMBASE database. No limits were used 
for the search. The final search string is available in 
appendix 2.

Study selection
Identified records were collected in an Endnote data-
base. One author screened all titles and abstracts for 
inclusion in two stages: screening titles and abstracts, 
and reading full text manuscripts. The second author 
verified the final inclusion using a standardised checklist. 
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The final selection was based on a consensus decision. 
Authors were not blinded to the manuscripts’ citation 
information.

Data collection process
Data were collected in an Excel database. The data col-
lection was first piloted in order to standardise the col-
lection process and define uniform terms. The data 
collection was performed by one author. Data were veri-
fied a second time by the same author.

Data items
The following information was collected: study citation, 
country, design, setting, sample characteristics, sample 
size, outcome definitions and measurements, statistical 
analyses, definition of predictors, purpose and design of 
prediction models, and the evaluation and performance 
of prediction models.

Risk of bias
The PROBAST tool (Prediction model Risk Of Bias 
ASsessment Tool) was used to assess the risk of bias for 
the participants, predictors, outcome and analysis for 
each model [18]. A standardised questionnaire was used 
to rate the risk of bias as ‘yes’, ‘probably yes’, ‘no’, ‘probably 
no’, or ‘no information’. An overall judgement was made 
as either low risk of bias, high risk of bias or unclear risk 
of bias. One author assessed the risk of bias.

Summary measures
We investigated the discrimination and calibration for 
models with a binary and survival outcome, and the R2 
measure and calibration for models with a continuous 
outcome [19]. The discrimination was expressed using 
the concordance (c) statistic. The c statistic is equivalent 
to the area under the curve (for binary outcomes), and 
the following values were used in the interpretation of 
the performance: < 0.7 is poor, 0.7 – 0.8 is moderate, 0.8 
– 0.9 is good, > 0.9 is very good [20]. The performance 
of linear models was measured using R2. The calibration 
could be measured using different statistics: observed 
versus expected events, calibration slope, calibration in 
large, calibration plot, or the Hosmer-Lemeshow test.

Synthesis of results
Summary tables were drafted to describe the study char-
acteristics, risk of bias and findings of the studies. We 
originally planned to construct funnel plots to visualize 
the different performance measures (R2, discrimination, 
calibration). However, the majority of the studies did not 
report standard errors or sufficient information to con-
struct confidence intervals. We changed our strategy and 
described the distribution using scatter plots to visualize 

the discrimination and R2 of the individual studies, and 
constructed box plots to describe the central tendency 
(median) and spread of the data (interquartile range). We 
further observed substantial differences between studies 
and models and therefore decided to describe the results 
within subgroups based on the 1) definition of the out-
come (ADL, IADL, ADL or IADL, mobility or disability), 
2) type of summary measure (c statistic or R2), 3) type 
of model (univariable or multivariable), 4) type of model 
evaluation (development or validation). We used the ‘bag 
of words’ text mining procedure to summarise the clini-
cal predictors included in the models. This procedure 
was used to create a word cloud to describe the frequen-
cies of the predictors. Analyses were performed using R 
studio (using the ‘dplyr’, ‘ggplot2’, ‘Hmisc’, ‘tm’ and ‘word-
cloud’ packages).

In addition, we described individual models that dem-
onstrated a good performance in a validation cohort 
(c statistic > 0.8, R2 > 0.5) separately using a narrative 
synthesis.

Results
A total of 11952 titles and abstracts, and 316 full text 
manuscripts were screened for inclusion. A total of 34 
studies were retained for inclusion. [6, 7, 21–52] An addi-
tional nine studies were identified through secondary 
sources [53–61], resulting in a final sample of 43 studies 
(see Figure 1).

Study characteristics
The majority of studies originated from North Amer-
ica (n = 19) or Europe (n = 15), and to a lesser extent 
from Asia (n = 7), or South America (n = 1) or Africa 
(n = 1). All but one study used data from a prospec-
tive cohort study; the one study using data from a ran-
domized controlled trial. The median age across the 
samples was 76 years, with a minimum of 66 and a 
maximum of 85. Eighteen (43%) of the studies recruited 
persons who were independent in ADL or mobility at 
baseline. Basic ADL was the most prevalent outcome 
(n = 15), followed by Instrumental ADL (IADL, n = 8), 
mobility (n = 5), disability (n = 4), or a composite out-
come of ADL and IADL (n = 4). The remaining studies 
had multiple outcome measurements of ADL, IADL, 
mobility, or bathing and dressing. Almost all studies 
evaluated predictions of functional decline (n = 39), 
two studies predicted a change in outcome score, and 
two studies predicted the outcome score on a continu-
ous scale. The median incidence of functional decline 
across the studies was 20%, with a minimum of 5% 
and a maximum of 59%. The median time to follow-
up across the studies was two years, with a minimum 
of half a year and a maximum of nine years. The 43 
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studies included 167 evaluations of prediction models. 
The results will be reported at the level of the 167 eval-
uations of prediction models. The characteristics are 
described in table 1.

Risk of bias
There was a low risk of bias in 13 model evaluations, 
high risk of bias in 135 evaluations, and there was 
uncertainty in the remaining 19 evaluations (see Fig-
ure 2). The majority of the model evaluations had a low 
risk of bias on the domains related to measuring pre-
dictors (n = 157) and outcomes (n = 130). However, 
the majority of evaluations had a high risk of bias on 
the domains related to recruiting participants (n = 
86) and analyses (n = 158). A clear description of the 
recruitment was often missing or only participants with 
complete data were selected from the cohort for analy-
sis. Predictors were often selected based on p-values 
without accounting for overfitting or optimism in the 
performance, and the influence of right censoring (e.g. 
due to death) was not estimated.

Prediction models
Of the 167 evaluations, 62 were univariable model eval-
uations, of which 58 estimated the risk for functional 
decline, and four validated previously determined cut-off 
criteria. Sixty-seven evaluations of multivariable models 
were performed, of which twelve were also validated by 
the authors who developed the model. Thirty-eight mul-
tivariable model evaluations were external validations by 
an independent research team. The median sample size 
across the models was 1198, with a minimum of 83 and a 
maximum of 27220.

Performance of models
In the evaluations (see Figure  3), the median c statistic 
values for the multivariable development models ranged 
between 0.65 and 0.76 (minimum = 0.58, maximum = 
0.90), and were consistently higher than the values of 
the validation models for which median c statistic val-
ues ranged between 0.6 and 0.68 (minimum = 0.50, 
maximum = 0.81). The values of the univariable models 
tended to be similar to those of the multivariable models 

Fig 1.  Flowchart
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Table 1.  Study characteristics

Author Year Country Design Population Age a Aim n Outcome, FU b

Adachi [17] 2018 Japan Prospective 
cohort

Older people 
walking indepen-
dently

79 [76 - 82] Evaluate factor 518 Mobility limita-
tion, 2

Adachi [18] 2018 Japan Prospective 
cohort

Women 75 or 
older walking 
independently

79 [77 - 82] Evaluate factor 330 Mobility limita-
tion, 2

Aliberti [19] 2018 USA Prospective 
cohort

65 or older with-
out dementia or 
ADL dependence

74.4 (7.0) Develop model 
Validate index

7388 7388 ADL depend-
ence, 2,

Arnau [20] 2016 Spain Prospective 
cohort

75 or older 
without severe 
dependence

81.7 (4.6) Develop model 252 IADL or ADL 
decline, 1

Ben-Shalom [21] 2016 USA Prospective 
cohort linked 
with administra-
tive database

Medicare benefi-
ciaries 65 or older

Develop model 10057 ADL depend-
ence, 4

Bongue [48] 2017 Canada Prospective 
cohort

65 or older 78.7 (7.9) Validate index 1224 Disability, 2

Brach [22] 2012 USA Prospective 
cohort

65 or older walk-
ing indepen-
dently

79.4 (4.1) Evaluate factor 339 Mobility limita-
tion, 1

Carrière [49] 2005 France Prospective 
cohort

75 or older inde-
pendent in IADL

79 [76 - 81] Develop model 
Validate model

545 807 IADL depend-
ence, 7

Clark [50] 2012 USA Prospective 
cohort

65 or older inde-
pendent in ADL

74.4 (7.2) Develop model 
Validate model

6233 3213 ADL depend-
ence, 2

Clark [6] 2015 USA Prospective 
cohort

65 or older inde-
pendent in ADL

74.1 (6.7) Develop model 
Validate model

5332 2763 ADL depend-
ence, 2

Classon [23] 2016 Sweden Prospective 
cohort

85 or older Evaluate factor 83 IADL decline, 5

Covinsky [24] 2006 USA Prospective 
cohort

70 or older inde-
pendent in ADL

76.8 (5.3) Develop model 
Validate model

3245 1994 ADL depend-
ence, 2

Deckx [7] 2015 Netherlands Prospective 
cohort

70 or older with 
and without 
cancer

78.1 (5.5) Validate index 134 220 ADL decline, 1

Dixon [48] 2021 USA Prospective 
cohort

65 or older 75.4 (6.1) Develop model 93 IADL dependence, 
1.5

Donoghue [25] 2014 Ireland Prospective 
cohort

50 or older 72.8 (6.1) Evaluate factor 1664 ADL depend-
ence, 2
IADL depend-
ence, 2

Ensrud [51] 2009 USA Prospective 
cohort

67 or older men 
walking indepen-
dently

76.4 (5.6) Validate index 3132 IADL dependence, 
3.2

Faurot [26] 2015 USA Prospective 
cohort linked 
with administra-
tive database

65 or older Develop model 6391 ADL depend-
ence, 4

Gill [27] 1997 USA Prospective 
cohort

72 or older inde-
pendent in ADL

78.5 (5.2) Validate index 1813 ADL depend-
ence, 1

Gobbens [52] 2012 Netherlands Prospective 
cohort

75 or older 80.3 (3.8) Update index 479 Disability, 2

Guralnik [53] 2000 USA Prospective 
cohort

65 or older with-
out disability

Evaluate factor 6534 Disability, 1-4

Hegendorfer 
[28]

2019 Belgium Prospective 
cohort

80 or older 84.7 (3.7) Validate index 560 ADL decline, 1.7

Hong [29] 2016 South Korea Prospective 
cohort

60 or older 72.5 (55) Evaluate factor 8000 IADL decline, 3

Ishimoto [30] 2010 Japan Prospective 
cohort

65 or older 75.5 (5.9) Validate index 518 ADL decline, 1
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ADL Activities of Daily Living, IADL Instrumental Activities of Daily Living, a data is reported as mean (standard deviation) or median [interquartile range]; b FU = 
Follow-up, is reported as number of years.

Table 1.  (continued)

Author Year Country Design Population Age a Aim n Outcome, FU b

Jonkman [31] 2019 Germany, United 
Kingdom, Italy, 
Netherlands

4 Prospective 
cohorts

65 - 75y at 
baseline without 
limitations

69.7 (3.0) Develop model 
Validate model

2560 2560 ADL depend-
ence, 3

Jonkman [32] 2018 Italy, Netherlands 2 Prospective 
cohorts

60 - 70y at 
baseline

67.5 (2.1) Develop model 312 IADL or ADL 
decline, 9

Lam [33] 2020 Hong Kong Prospective 
cohort

65 or older walk-
ing indepen-
dently

72.5 (5.3) Validate index 1566 Physical limita-
tions, 4

Lin [34] 2004 Taiwan Prospective 
cohort

65 or older 73.4 Evaluate factor 1200 ADL decline, 1

McClintock [35] 2018 United States Prospective 
cohort

Medicare benefi-
ciaries 65 or older

Develop model 
Validate model

12758 8506 IADL decline, 2

Nuesch [36] 2015 UK 2 Prospective 
cohorts

Older adults 
without locomo-
tor disability

61 - 68 Develop model 
Validate model

2377 3194 Locomotor dis-
ability, 7-8

Onder [54] 2005 USA Prospective 
cohort

Older women 
with functional 
disability

78.7 (8.0) Evaluate factor 484 684 ADL dependence, 
3 Mobility limita-
tion, 3

Op het Veld [55] 2019 Netherlands Prospective 
cohort

65 or older who 
are (pre)frail

76.3 (6.6) Validate index 2420 IADL or ADL 
decline, 2

Papacristou [37] 2017 UK Prospective 
cohort

Men between 
71 - 92

8.0 (4.4) Evaluate factor 1198 Mobility limita-
tion, 3

Perera [38] 2015 International 7 Prospective 
cohorts

Older persons 73.9 (5.3) Evaluate factor 27220 Bathing/dressing 
dependency, 3 
Mobility limita-
tion, 3

Saraiva [39] 2020 Brazil Prospective 
cohort

60 or older 80 (12) Validate index 317 ADL decline, 1

Sarkisian [40] 2000 USA Prospective 
cohort

Women 65 or 
older

73 Develop model 
Validate model

4421 2211 IADL decline, 4

Spalter [41] 2013 Israel Prospective 
cohort

60 or older 70.9 Develop model 982 Change in mobil-
ity, 5

Studenski [56] 2003 USA 3 Prospective 
cohorts

65 or older 74.1 (5.7) Evaluate factor 
Validate index 
Develop model

974 IADL or ADL 
decline, 1

Suijker [42] 2014 Netherlands Prospective 
cohort

70 or older 76.1 [8.4] Update index 
Validate index

644 2085 ADL decline, 1

Tas [43] 2011 Netherlands Prospective 
cohort

55 or older > 65 Develop model 5027 Mild disability, 6

Teo [44] 2017 Signapore Prospective 
cohort

55 or older inde-
pendent in ADL

66.1 (7.6) Validate index 2406 IADL depend-
ence, 2
ADL depend-
ence, 2

Terhorst [45] 2017 USA Prospective 
cohort

Women 70 or 
older

78.9 (5.1) Develop model 256 Mobility limitation, 
0.5 ADL depend-
ence, 0.5 IADL 
dependence, 0.5

Wennie Huang 
[46]

2010 USA Prospective 
cohort

65 or older inde-
pendent in ADL

80.3 (7.0) Evaluate factor 110 ADL dependence, 
0.5 – 1.5

Yam [47] 2013 USA Secondary analy-
sis of RCT​

65 or older - Develop model 582 IADL function, 5
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Fig 2.  Risk of bias

Fig 3.  Performance of models
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(median values ranging between 0.68 and 0.75 (minimum 
= 0.54, maximum = 0.85) for development, and ranging 
between 0.64 and 0.89 (minimum = 0.64, maximum = 
0.91) for validation).

The R2 values of the multivariable development mod-
els ranged between 0.10 and 0.42, but only the outcome 
IADL had sufficient observations to estimate the distri-
bution parameters. The performance of the multivariable 
models appeared to be similar for the different outcomes. 
The calibration was measured in nine evaluations. Six 
evaluation reported the expected versus observed events, 
two used a calibration plot, and one evaluation estimated 
the calibration slope and intercept.

Four models demonstrated a good performance in a 
validation cohort. However, the risk of bias was high in 
the first three models, and uncertain in the last model. 
Clark et al. included nine baseline predictors in a model 
to predict ADL dependence and validated the model at 
two years follow-up (c statistic = 0.80) [6]. Gobbens et al. 
evaluated the Tilburg Frailty Index (15 predictors) for 
the prediction of disability measured using the Gronin-
gen Activity Restriction index at two years follow-up (c 

statistic = 0.8) [57]. Ishimoto et  al. evaluated a 21-item 
fall risk index for the prediction of ADL decline at one 
year follow-up (c statistic = 0.8) [34]. Teo et al. validated 
a social and physical frailty index (18 predictors) for the 
prediction of severe ADL disability at half a year follow-
up (c statistic 0.81) [48].

Two univariable models demonstrated a good to excel-
lent performance in a validation cohort. However, the 
risk of bias was uncertain for both models. Both mod-
els were evaluated in the same cohort by Adachi et  al., 
which observed that a gait speed of <0.8m/s had an excel-
lent discrimination (c statistic 0.91), and a gait speed of 
<1.0m/s had a good discrimination (c statistic 0.89) for 
the outcome mobility limitations at two years follow-up 
[22].

Predictors
The median number of predictors in the multivari-
able models that were evaluated was seven, with a 
minimum of two and a maximum of 26. Six model evalu-
ations included longitudinal repeated measurements 

Fig 4.  Predictors in prognostic models



Page 9 of 12Van Grootven and van Achterberg ﻿BMC Geriatrics          (2022) 22:465 	

of predictors, with the remaining models only included 
baseline measurements.

A total of 559 predictors were recorded, with 55 predic-
tors being used in at least three evaluations (see Figure 4; 
note that the larger words indicate a higher frequency of 
use of the predictor in the models). The fifteen predic-
tors most frequently used were gait speed (n = 47), age 
(n = 38), cognition (n = 27), frailty (n = 24), gender (n = 
22), comorbidity (n = 15), grip strength (n = 15), physi-
cal activity (n = 15), body mass index (n = 15), IADL (n 
= 13), balance (n = 12), educational level (n = 12), resi-
dential status (n = 12), sarcopenia (n = 12), and ADL (n 
= 10).

Discussion
This review evaluated the state of the art for models 
that aim to predict future functional status in older per-
sons. We identified the models, and summarised their 
performance, as well as the predictors that were used. 
Self-reported (in)dependence on activities of daily liv-
ing was the most prevalent outcome for the prediction of 
functional status. The performance of the models varied 
substantially, ranging from poor to very good, but was 
moderate to low on average. The performance of the pre-
diction models was generally lower in validation cohorts. 

Multivariable models appeared to be slightly better for 
the prediction of future functional status than univari-
able models, but this was difficult to assess because most 
univariable models lacked external validation. Gait speed 
was the most prevalent predictor, in particular for uni-
variable predictions, and demonstrated a moderate pre-
dictive performance (median c statistic = 0.70, minimum 
= 0.64, maximum = 0.91, data not shown). The major-
ity of studies (95%) did not evaluate the calibration of the 
model.

Our results are in line with the previous review on pre-
diction models for community dwelling older adults [9, 
13], that also observed a poor to moderate performance 
of prediction models for the outcome functional decline. 
Our review included more and different outcomes, but 
conclusions are the same across the different outcome 
measurements. We also included substantially more and 
more recent models, but the state of the art does not 
appeared to have improved. To date, no model appears 
to be ready for implementation in clinical practice. How-
ever, frailty models and gait speed measurements appear 
to be the most promising. Nonetheless, the high risk of 
bias for many studies, including those on frailty models, 
is a particular concern. Most studies ignored missing data 
and censoring of outcomes, which can bias the regression 
coefficients and ultimately lead to poorly calibrated mod-
els at the population level. Furthermore, calibration was 
only investigated in 5% of the models. Nonetheless, this 

is a key measure for prediction models as it assesses if the 
predicted outcome (probability or score) corresponds to 
the observed outcome. Poorly calibrated models over or 
under predict the probability and can potentially harm 
the subsequent decision-making process [62].

Specific suggestions can be made to improve the body 
of evidence on the prediction of functional status. The 
majority of studies relied on statistical significance to 
select predictors, which can result in overfitting and 
overly optimistic performance measures for the devel-
oped model [63]. This optimism is often not detected 
because most models are never validated. This could be 
mitigated by finding consensus on a core set of prognostic 
factors for functional status. For example, stacked regres-
sion could be used to derive predictors from a combina-
tion of different prediction models, i.e. the analysis would 
find the ideal combination of predictors across the mod-
els [64]. If new predictors are tested, and if testing relies 
on statistical selection, than penalised regression models, 
e.g. lasso-regression, is preferred; or a shrinkage factor 
should be applied to minimise the optimism as a result of 
predictor selection. These methods were not used in any 
of the included studies. An important discussion should 
also be the appropriate selection of statistical methods. 
The predominant method, logistic regression, does not 
account for censored observations (e.g. due to death) and 
disregards the missing data. Furthermore, the design of 
cohort studies have an inherent risk for attrition bias, 
i.e. that patients who experience disability or die are also 
more likely to have missing values because they drop-
out of the study. The association between disability and 
death is worrisome, because it is conceivable that per-
sons who have died would have experienced a different 
disability trajectory than persons who survived. A model 
that ignores this will have biased coefficients and there-
fore predictions [65]. These ‘informative right censoring’ 
assumptions should at least be tested in samples with 
loss to follow-up, e.g. using a joint model strategy. Lastly, 
clinical usefulness should also be part of the evaluation of 
a model that is well calibrated. Classification plots with 
the area under the curve and classification measures (e.g. 
sensitivity, specificity) for different potential cut-off val-
ues should be preferred over ROC curves [66].

The results of this review are somewhat discourag-
ing. Nonetheless, the burden of disability remains high 
and will be an important driver for increasing long-term 
healthcare costs [67]. We believe that the identification of 
persons who could benefit from interventions designed 
to prevent disability therefore remains a worthwhile pub-
lic health strategy.

Lastly, it is important that the impact of models is 
evaluated in practice. We have additionally searched for 
studies that implemented disability prediction models 
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in the community setting, but we could not identify any 
references. However, evaluating if the introduction of 
a prediction model changes care, e.g. increases physi-
cal therapy interventions, and improves outcome, e.g. 
reduced incidence of disability, will be an important 
future investigation.

Limitations
Some limitations should be noted. Although both 
authors screened the included studies independently, 
titles and abstracts were only screened by one author. 
However, we included a large number of studies and 
model which makes it likely that we have a sample that 
is representative from population of studies.. One author 
collected the data, and although this process was double-
checked, some data abstraction mistakes may have been 
made. Further, we inferred the performance of the mod-
els based on the distribution (median, interquartile range 
and range), but these should not be considered pooled 
results. The models, and their evaluation, differed sub-
stantially from each other and we did not consider it rel-
evant nor appropriate to perform a meta-analysis.

Conclusion
Currently available models for the prediction of future 
functional status in older persons have a low to moder-
ate performance on average. Though multivariable mod-
els perform slightly better than univariable models, high 
risks of bias in the evaluations of prediction models do 
not allow for any firm conclusions. There is currently no 
model that can be recommended for implementation in 
practice, but frailty models appear to be the most promis-
ing. Substantial improvements can be made in the meth-
odology of developing and validating prediction models 
for disability in the community setting.
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