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Hand grip strength variability during serial
testing as an entropic biomarker of aging: a
Poincaré plot analysis
Elena Ioana Iconaru* and Constantin Ciucurel

Abstract

Background: The Poincaré plot method can be used for both qualitative and quantitative assessment of self-
similarity in usually periodic functions, hence the idea of applying it to the study of homeostasis of living
organisms. From the analysis of numerous scientific data, it can be concluded that hand functionality can be
correlated with the state of the human body as a biological system exposed to various forms of ontogenetic stress.

Methods: We used the Poincaré plot method to analyze the variability of hand grip strength (HGS), as an entropic
biomarker of aging, during 60 repetitive tests of the dominant and nondominant hand, in young and older healthy
subjects. An observational cross-sectional study was performed on 80 young adults (18–22 years old, mean age
20.01 years) and 80 older people (65–69 years old, mean age 67.13 years), with a sex ratio of 1:1 for both groups.
For statistical analysis, we applied univariate descriptive statistics and inferential statistics (Shapiro–Wilk test, Mann–
Whitney U-test for independent large samples, with the determination of the effect size coefficient r, and simple
linear regression. We calculated the effect of fatigue and the Poincaré indices SD1, SD2, SD1/SD2 and the area of the
fitting ellipse (AFE) for the test values of each subject.

Results: The analysis of the differences between groups revealed statistically significant results for most HGS-
derived indices (p ≤ 0.05), and the magnitude of the differences indicated, in most situations, a large effect size
(r > 0.5). Our results demonstrate that the proposed repetitive HGS testing indicates relevant differences between
young and older healthy subjects. Through the mathematical modeling of data and the application of the concept
of entropy, we provide arguments supporting this new design of HGS testing.

Conclusions: Our results indicate that the variability of HGS during serial testing, which reflects complex repetitive
biomechanical functions, represents an efficient indicator for differentiation between young and older hand
function patterns from an entropic perspective. In practical terms, the variability of HGS, evaluated by the new serial
testing design, can be considered an attractive and relatively simple biomarker to use for gerontological studies.
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Background
The Poincaré plot as a tool for mathematical modeling of
data
The Poincaré plot defines a computational graphic tool
(scattergram-type plot) for Cartesian representation of a
series of data with dynamic nonlinear evolution. The ap-
plication of the method refers, in particular, to the study

of the time evolution of nonlinear phenomena that
characterize open physical systems.
The Poincaré plot is based on the concept of con-

structing a return map (recurrence plot) of a time series
of data and quantifies the recurrence, self-similarity, or
periodicity of state variables of systems [1]. Practically,
such analyses of the behavior of physical systems under
different circumstances appeal to the concept of entropy.
Entropy refers to the degree of disorder that character-
izes a physical system, which can be appreciated in
terms of the randomness and predictability of its
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evolution over time. Thus, greater entropy implies an in-
creased randomness and a lower system order [2].
By analysing the geometric characteristics of the

graphs plotted by the Poincaré method, it is possible to
extract quantitative variables that help to characterize
the dynamics of the systems taken into account [3].
Additionally, through complex statistical calculations,
correlations across multiple spatiotemporal scales can be
determined, which help to identify fractal dynamics [4].
Overall, using the proposed method, it is possible to
achieve an entropy-based analysis of complex time series
of data.
In mathematics, the Poincaré plot consists of a geo-

metrical representation in the Cartesian plane of a time
data string of the type x1, x2, x3, …, xn. Each value xi,
where i = 1 … .n, refers to a time-based state of nonlin-
ear evolution of a defined characteristic of a system. The
return map of the data includes a plot for the following
pairs of coordinates: (x1, x2), (x2, x3), … (xi, xi + 1)..., (xn-1,
xn). Usually, the resulting plot is an ellipse, which can
provide two important descriptors for a quantitative ana-
lysis of the dynamics of the time series data: SD1 and
SD2, which in fact represent the minor and the major
axes of the ellipse, respectively [5].
SD1 and SD2 are calculated through formulas that in-

corporate the standard deviation of the time series. Prac-
tically, SD1 represents the standard deviation
(dispersion) of the distances of points from the major
axis of the ellipse and indicates the short-term variability
of the time series of data. SD2 represents the standard
deviation (dispersion) from the minor axis of the ellipse
and indicates the long-term variability of the time series
of data [6].
The formulas for the two parameters are the follow-

ing [5–7]:

SD1 ¼
ffiffiffi

2
p

2
�SD xn−xnþ1ð Þ

SD2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
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where SD (xn – xn + 1) represents the standard deviation
of the time series xn – xn + 1 and SD (xn) the standard
deviation of the time series xn.
Another statistical indicator for the analysis of dy-

namic data evolution is the ratio SD1/SD2, which mea-
sures the relative balance between short- and long-term
variabilities of the time series of data [8]. For this reason,
SD1/SD2 reflects the clarity and linearity of the scatter
pattern [9]. For statistical analysis, the area of the fitting
ellipse (AFE) has been proposed, which is calculated by
the formula AFE = π ∗ SD1 ∗ SD2 [7].
The utility of the Poincaré plot is justified by the fact

that the initial qualitative analysis of a nonlinear

distribution of data, by tracing the ellipse, can be trans-
formed into a quantitative analysis in terms of linear
statistics by calculating SD1 and SD2.

Applications of Poincaré plot in the analysis of the
biological systems dynamics
Because living organisms can be assimilated to open bio-
logical systems, various forms of their entropic behaviors
have been proposed from the perspective of particular
dynamic physiological parameters [10].
In this regard, the Poincaré plot has proven to be

widely applicable in the field of human biology, for scale
entropy analysis of complex physiologic time series [11]
and for control systems involved in their complex regu-
lation [12].
Traditionally, Poincaré plots have been used to repre-

sent biomedical signals such as heart rate and respira-
tory pattern variabilities [1]. Most studies of this kind
are aimed at studying beat-to-beat heart rate variability
in clinical circumstances. In this way, representations of
R-R intervals can be extracted from serial electrocardio-
graphic records.
The bivariate segmented Poincaré plot analysis,

which is a variant derived from the classic one, is
used to study the interactions between beat-to-beat
RR intervals and its temporal enclosed systolic blood
pressure time series [13].
At the respiratory level, the utility of the Poincaré plot

analysis has been demonstrated for the exploration of
the breathing pattern variability in terms of total breath
duration, tidal volume, inspiratory time, expiratory time,
and peak inspiratory flow [14, 15].
The Poincaré plot method was also proposed for the

study of blood pressure variability [16], glucose variabil-
ity from continuous glucose monitoring systems [7, 17],
and the variability of some electroencephalographic
paths [18, 19], polysomnography paths [9], plethysmog-
raphy data [20], electromyography or electrohysterogra-
phy data [6].
A new perspective for developing the Poincaré plot

method has been projected for the purpose of compar-
ing dynamical systems concepts and techniques for
biomechanical analysis [4]. Thus, it is known that human
movement implies entropy changes because body sys-
tems are exposed to various forms of stress constraints
during locomotion.
In this way, the Poincaré plot analysis was proposed to

characterize the mechanical time series fluctuations of
gait. More explicitly, it quantified the foot clearance vari-
ability of patients in different clinical contexts (older
people, neurodegenerative diseases, stroke etc.) [6, 21,
22] or other gait parameters (swing time, step length,
and step width) [23]. For gait analysis through the
Poincaré plot method, selected gait data signals (stride
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intervals) have been proposed for recording by some
authors using force-sensitive resistors. These authors
demonstrated that in healthy subjects, the parameters
SD1 and SD2 are lower than in subjects with Parkinson’s
disease and Huntington’s disease [6]. Another biomech-
anical study regarding the minimum foot clearance vari-
ability in the elderly during walking indicated increased
irregularities and randomness in the gait patterns for in-
dividuals with balance problems and a history of falls, as
an indication of loss of gait control mechanism [21].
Additionally, the Poincare indices SD1 (the short-term
variability) and SD2 (the long-term variability) of the gait
rhythm and the timing of the gait cycle can be readily
employed to discern subjects with normal motor control
from subjects with neurodegenerative disorder [22].
Another application of the Poincaré plot method is to

analyze the center of pressure patterns during various
sports-specific movements [24].
In conclusion, the Poincaré plot is used in clinical

practice for the analysis of physiological time series,
which are usually expressed as lengths, volumes, time in-
tervals, pressures or concentrations of substances [7, 14,
16, 17, 23]. These parameters can be recorded during
rest but also during exercise or other stress exposures
[25, 26]. Although exercise induces fatigue, the parame-
ters remain useful for the evaluation of human adapta-
tion to physical effort.

The perspective of applying the Poincaré plot for
studying hand grip strength variability as an entropic
biomarker of aging
From a thermodynamic point of view, the aging of an
organism, as an open biological system, can be com-
pared to a slow process with nonlinear dynamics of
accumulation of molecular clutches and loss of complex-
ity of repetitive structures (fractals), namely, the growth
of whole-body entropy content [27]. Any dysfunction of
the body or disease state also leads to increased entropy
[28] and possibly to the intensification of the aging rate.
The Poincaré plot method can be used for both quali-

tative and quantitative assessment of self-similarity in
usually periodic functions, hence the idea of the applica-
tion to the study of homeostasis of living organisms.
Therefore, taking into account the entropic nature of the
homeostatic equilibrium [29], we consider innovative the
proposal to use biomarkers of aging that reflect complex
repetitive biomechanical functions that can be quantified
by mathematical modeling.
In practice, hand grip strength (HGS) has wide useful-

ness for the standardized determination of the individ-
ual’s health and level of functionality, the impact of
morbidity/disability, or the appreciation of the dynamics
of the aging process [30]. In a recent study, we also dem-
onstrated the applicability of HGS as a parameter for

mathematical modeling for the study of the process of
aging [31].
Classically, HGS is determined by limited procedures

in terms of the number of repetitions (ordinarily, 1–3
repetitions), the highest recorded value of which is
taken. Another proposed variant is the determination of
the fatigue of the hand during isometric efforts of
clamping of the dynamometer in various anatomical po-
sitions [32].
Very few studies have focused on repetitive tests of

HGS, for example, for the analysis of endurance, muscle
fatigue and hand weakness [33, 34].

Methods
Premises and aim of the study
From the analysis of numerous scientific data, it can
be concluded that hand functionality can be corre-
lated with the state of the human body as a biological
system exposed to various forms of ontogenetic stress.
Therefore, we considered using the Poincaré plot
method to analyze the variability of HGS during re-
petitive tests for healthy subjects belonging to two
age groups (young and old). By comparing the data
series, we can draw conclusions on the dynamics of
the normal aging process, the new test design having
possible worth as an entropic biomarker of the aging
process.

Participants and type of study
An observational cross-sectional study was performed
on two groups of healthy subjects. The first group con-
sisted of 80 young adults aged 18–22 years (mean age
20.01 years), and the second group consisted of 80 older
people aged 65–69 years (mean age 67.13 years). The sex
ratio was 1:1 for both groups of subjects.
Young adults were selected from among the students

of the University of Pitesti and older people from among
community-dwelling people. All participants, at the time
of testing, had a good health status, were completely au-
tonomous in activities of daily living (ADL) and did not
have a significant pathological history (chronic or acute
pathology of the upper limbs, recent injuries, arthritis,
neuromuscular disorders or other medical conditions
that could interfere with HGS). Subjects were untrained
individuals with previous experience with light or mod-
erate leisure physical activity. For each individual, we re-
corded the informed consent to participate in the study
in accordance with the ethics of research on human
subjects. Ethics approval was obtained from the Ethics
Committee of the Research Center for Promoting
Excellence in Professional Training, University of Pitesti
(reference number 836/20.04.2018).
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Data acquisition
The study was performed over 9 months in 2018.
Through anamnesis, we collected personal information
from each participant regarding the health status and
previous medical history. Next, for each of them, we
assessed the HGS alternatively for both hands using a
hydraulic hand dynamometer (Saehan model, MSD
Europe bvba, Belgium). The results were recorded in
kilogram-force (kgf). This type of device has good refer-
ences for clinical use, in terms of validity and reliability,
similar to the hydraulic Jamar dynamometer [35].
According to classical recommendations for obtaining

maximal HGS results, participants sat on a chair, with
feet flat on the floor, with the elbow flexed at 90°, the
forearm in a neutral position and the wrist between 0°
and 30° of extension [36]. Basically, the goal was to
choose a position as comfortable as possible for each
subject within the mentioned interval. This fact is in ac-
cordance with the recommendations for optimal dyna-
mometer handle position to assess maximal isometric
HGS in epidemiological studies and with the recommen-
dations of the American Society of Hand Therapist [36].
As a standard procedure, the dynamometer’s base must

be applied on the first metacarpal bone (inside the palm),
with the handle in contact with half of the last four fin-
gers. To fit each individual’s palm size, the dynamometer’s
handle was adjusted for each subject (the handle allows
fine adjustment, from 3.8 cm to 8.9 cm, in 5 steps).
For each hand, 60 successive tests were performed

over an 8-min interval in the form of repeated maximal
isometric efforts, with a duration of 3 s each, followed by
a relaxation phase of 5 s (when the result was read). No
other body movement was allowed during testing. The
subjects were encouraged to reach the maximal results,
this condition requiring a high concentration on the
task. Our protocol was designed by starting from the
classic recommendations for clinical determination of
HGS regarding the duration of maximal isometric effort
[37]. For the determination of hand grip endurance with
repetitive maximal isometric contractions, some authors
have used 2.5 s for contractions and 1 s for rest time
[38]. In our case, a higher value of the pause (5 s) was
proposed to reduce muscle fatigue. For this reason, the
selected number of 60 successive tests is relatively easy
for healthy subjects to do and does not cause excessive
fatigue.
To ensure a uniform test pace and to assist the sub-

jects, we used a sensory multimedia support with visual
and acoustic feedback. Hence, on a digital display
(smartphone or tablet), we ran a .gif file to synchronize
the testing phases with the rest in the form of a count-
down timer. Initially, the dominant hand, considered to
be the one preferred for ADL (writing), was tested. Next,
the procedure was repeated for the nondominant hand

after a 5-min break. Classically, a pause of at least 1 min
is recommended between the two tests [37]. In our case,
a 5-min extended pause between the measurements with
the dominant and nondominant hands was selected to
ensure that the fatigue from the measurement of the one
hand did not influence the other hand.
Each subject performed a short familiarization trial

(4–5 HGS contractions) 5 min before the main testing to
familiarize themselves with the procedure. The testing
started from the resting state, without a warm-up ses-
sion. This was motivated by the fact that the increase in
HGS due to warm-up could be clinically significant [39].
Common anthropometric measurements (body height,

H; body mass, M) were also performed according to
standard procedures. All assessments were completed in
the morning, between 8 and 11 a.m.

Outcomes and statistical analysis
Data series of HGS were grouped by sex, age (young,
older people), and laterality (dominance of the hand).
For statistical analysis, we applied univariate descriptive
statistics and inferential statistics. Therefore, we initially
calculated the mean HGS and the Poincaré indices SD1,
SD2, SD1/SD2 and AFE for each subject and for each
hand. Starting from the H and W values, we also calcu-
lated the body mass index (BMI) for each participant.
We defined another parameter, the effect of fatigue, as
an average decrease in HGS, as a percentage change be-
tween the first and the last evaluation in the set of 60
tests.
Next, we determined the mean and standard deviation

(SD) for the young and older groups (men, women, men
and women together). As examples, we plotted the
Poincaré graphs for one subject of each group.
The data series was checked for normality by means of

the Shapiro–Wilk test, and since all of the data
presented a nonnormal distribution, we applied the
Mann–Whitney U-test for independent large samples
(N > 20) to check the statistical significance of the differ-
ences between groups (calculation of the U and z values).
To evaluate the magnitude of the difference between

groups, we determined the effect size coefficient r with
the following formula: r ¼ z

√n
, where n is the number of

subjects [40]. The interpretation of the r coefficient is as
follows: values greater than 0.5 denote a large effect size,
values in the range of 0.3–0.5 indicate a medium effect
size, and values smaller than 0.1 indicate a small effect
size [41]. Finally, we run a simple linear regression
model for the analyzed variables.

Results
The results are centralized as descriptive statistical indi-
cators in Tables 1 and 2. It is noteworthy that the
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statistical indicators for HGS, in all situations, could be
included in normative data according to sex and lateral-
ity for the concerned age groups [42, 43]. Interpretations
should be made by noting that the mean values of HGS
for the study groups refer to the series of values obtained
by 60 successive measurements for each participant’s
hand.
Clearly, during HGS serial testing, the HGS values

tended to decrease gradually due to the phenomenon of
muscle fatigue. Therefore, the maximum values during
these successive measurements can be considered repre-
sentative for each subject as the reference level of HGS.
At the same time, the mean values of HGS indicate the
fatigue over time and the adaptability to serial testing for
the investigated subjects.

For the inferential statistical analysis, a nonparametric
test (the Mann-Whitney U-test) was applied to compare
the differences between data series with a nonnormal
distribution. In fact, the existence of this type of distri-
bution was expected, considering the temporal nonline-
arity of the evolution of the parameters derived from the
HGS values (Tables 3, 4 and 5).
The analysis of the differences between groups re-

vealed statistically significant results for most HGS-
derived indices (p ≤ 0.05), with the exception of the ratio
SD1/SD2 (for the dominant and nondominant hands),
when comparing the groups of young women and older
women.
In the case of statistically significant results, the

magnitude of the differences between the data series

Table 1 Statistic indicators for investigated parameters in the young groups

Variable Age years M kg H cm BMI kg/m2 HGS kgf Fatigue % SD1 kgf SD2 kgf SD1/SD2 AFE kgf2

Men (n = 40)

D ND D ND D ND D ND D ND D ND

Mean 20.08 66.70 175.34 21.65 46.85 43.39 15.89 16.87 1.18 1.13 3.36 3.51 0.36 0.36 13.60 13.31

SD 1.12 7.41 6.71 1.50 6.09 5.63 7.68 8.54 0.42 0.36 1.32 1.52 0.10 0.14 12.08 9.95

Women (n = 40)

D ND D ND D ND D ND D ND D ND

Mean 19.95 55.11 164.55 20.33 26.07 23.38 24.53 26.70 1.19 1.14 3.44 3.25 0.36 0.37 13.07 11.73

SD 1.22 6.30 6.13 1.73 5.00 4.50 8.52 10.43 0.37 0.30 0.79 0.71 0.14 0.13 5.62 4.28

Men and women (n = 80)

D ND D ND D ND D ND D ND D ND

Mean 20.01 60.90 169.94 20.99 36.46 33.38 20.21 21.78 1.19 1.13 3.40 3.38 0.36 0.36 13.34 12.52

SD 1.16 8.98 8.38 1.74 11.83 11.27 9.15 10.68 0.39 0.33 1.08 1.18 0.12 0.13 9.36 7.65

M body mass, H body height, BMI body mass index, HGS hand grip strength, D dominant, ND nondominant, SD standard deviation, AFE area of the fitting ellipse,
n number of subjects

Table 2 Statistic indicators for investigated parameters in the older groups

Variable Age years M kg H cm BMI kg/m2 HGS kgf Fatigue % SD1 kgf SD2 kgf SD1/SD2 AFE kgf2

Men (n = 40)

D ND D ND D ND D ND D ND D ND

Mean 67.30 79.20 173.03 26.50 31.44 27.68 34.74 38.61 1.56 1.50 6.13 6.03 0.29 0.28 29.65 28.42

SD 1.26 9.18 7.72 3.02 7.35 6.80 15.86 12.45 0.26 0.27 1.82 1.91 0.17 0.13 9.01 9.96

Women (n = 40)

D ND D ND D ND D ND D ND D ND

Mean 66.95 67.11 159.56 26.39 19.64 17.10 48.09 53.84 1.63 1.58 5.38 5.05 0.35 0.34 27.41 25.17

SD 1.34 8.02 6.75 3.02 3.52 3.17 12.72 7.82 0.26 0.21 1.52 1.25 0.17 0.11 8.26 7.42

Men and women (n = 80)

D ND D ND D ND D ND D ND D ND

Mean 67.13 73.15 166.29 26.45 25.54 22.39 41.42 46.23 1.60 1.54 5.76 5.54 0.32 0.31 28.53 26.80

SD 1.31 10.50 9.89 3.00 8.25 7.49 15.78 12.86 0.26 0.25 1.71 1.68 0.17 0.12 8.66 8.87

M body mass, H body height, BMI body mass index, HGS hand grip strength, D dominant, ND nondominant, SD standard deviation, AFE area of the fitting ellipse,
n number of subjects
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indicated, in most situations, a large effect size (r > 0.5).
There were also three distinct situations in which the r
values indicated a medium effect size: for the SD1/SD2

ratio of the nondominant hand when comparing the
groups of young men and older men and for the SD1/
SD2 ratio of the dominant and nondominant hands
when comparing the groups of young and older subjects.
Next, we applied a standard linear analysis of the fa-

tigue and the Poincaré parameters. The fact that the var-
iables do not have a normal distribution is not an
impediment, and linear regression remains a statistically
sound technique in studies of large sample sizes [44].
For this reason, we applied the simple linear regression
at the level of young and older groups (n = 80). The re-
sults of simple linear regression analysis which was

conducted to determine the effect of fatigue (the
predictor variable) on the parameters measured (the out-
come variables) are presented in Table 6.
We found that our regression model is statistically sig-

nificant in most cases. Therefore, a certain part of the
variability of the analyzed parameters is explained by the
appearance of the fatigue effect.

Discussion
At present, biological aging can best be quantified
through compound aging scores, and HGS is used as
a singular indicator in a classic manner as an ap-
proximate predictor of longevity, disability, frailty
and/or morbidity [45, 46].

Table 3 Comparison of recorded parameters between young and older men groups

Parameters Young men (n = 40), mean ± SD Older men (n = 40), mean ± SD U z p r

HGS, D (kgf) 46.85 ± 6.09 31.44 ± 7.35 100 6.73 ≤ 0.05 1.06

Fatigue, D (%) 15.89 ± 7.68 34.74 ± 15.86 203 −5.74 ≤ 0.05 − 0.91

SD1, D (kgf) 1.18 ± 0.42 1.56 ± 0.26 291.5 −4.89 ≤ 0.05 −0.77

SD2, D (kgf) 3.36 ± 1.32 6.13 ± 1.82 191 −5.86 ≤ 0.05 −0.93

SD1/SD2, D 0.36 ± 0.10 0.29 ± 0.17 375 4.08 ≤ 0.05 0.65

AFE, D (kgf2) 13.60 ± 12.08 29.65 ± 9.01 145 −6.30 ≤ 0.05 −1

HGS, ND (kgf) 43.39 ± 5.63 27.68 ± 6.80 86.5 6.86 ≤ 0.05 1.08

Fatigue, ND (%) 16.87 ± 8.54 38.61 ± 12.45 162.5 − 6.13 ≤ 0.05 − 0.97

SD1, ND (kgf) 1.13 ± 0.36 1.50 ± 0.27 270 −5.10 ≤ 0.05 − 0.81

SD2, ND (kgf) 3.51 ± 1.52 6.03 ± 1.91 240.5 −5.38 ≤ 0.05 −0.85

SD1/SD2, ND 0.36 ± 0.14 0.28 ± 0.13 491.5 2.96 ≤ 0.05 0.47

AFE, ND (kgf2) 13.31 ± 9.95 28.42 ± 9.96 179.5 −5.97 ≤ 0.05 −0.94

HGS hand grip strength, D dominant, ND nondominant, SD standard deviation, AFE area of the fitting ellipse, n number of subjects, U Mann–Whitney’s U-test
values, z scores, p thresholds of statistical significance, r effect size coefficient

Table 4 Comparison of recorded parameters between young and older women groups

Parameters Young women
(n = 40), mean ± SD

Older women
(n = 40), mean ± SD

U z p r

HGS, D (kgf) 26.07 ± 5.00 19.64 ± 3.52 226.5 5.51 ≤ 0.05 0.87

Fatigue, D (%) 24.53 ± 8.52 48.09 ± 12.72 146 −6.29 ≤ 0.05 −0.99

SD1, D (kgf) 1.19 ± 0.37 1.63 ± 0.26 235 − 5.43 ≤ 0.05 −0.86

SD2, D (kgf) 3.44 ± 0.79 5.38 ± 1.52 203 −5.74 ≤ 0.05 −0.91

SD1/SD2, D 0.36 ± 0.14 0.35 ± 0.17 657 1.37 – –

AFE, D (kgf2) 13.07 ± 5.62 27.41 ± 8.26 122.5 −6.51 ≤ 0.05 −1.03

HGS, ND (kgf) 23.38 ± 4.50 17.10 ± 3.17 182 5.94 ≤ 0.05 0.94

Fatigue, ND (%) 26.70 ± 10.43 53.84 ± 7.82 27 −7.43 ≤ 0.05 −1.17

SD1, ND (kgf) 1.14 ± 0.30 1.58 ± 0.21 206.5 −5.71 ≤ 0.05 −0.90

SD2, ND (kgf) 3.25 ± 0.71 5.05 ± 1.25 187 −5.89 ≤ 0.05 −0.93

SD1/SD2, ND 0.37 ± 0.13 0.34 ± 0.11 677 1.18 – –

AFE, ND (kgf2) 11.73 ± 4.28 25.17 ± 7.42 72 −7.00 ≤ 0.05 −1.11

HGS hand grip strength, D dominant, ND nondominant, SD standard deviation, AFE area of the fitting ellipse, n number of subjects, U Mann–Whitney’s U-test
values, z scores, p thresholds of statistical significance, r effect size coefficient
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Table 5 Comparison of recorded parameters between young and older groups

Parameters Young group
(n = 80), mean ± SD

Older group
(n = 80), mean ± SD

U z p r

HGS, D (kgf) 36.46 ± 11.83 25.54 ± 8.25 1472 5.90 ≤ 0.05 0.66

Fatigue, D (%) 20.21 ± 9.15 41.42 ± 15.78 806.5 −8,17 ≤ 0.05 −0.91

SD1, D (kgf) 1.19 ± 0.39 1.60 ± 0.26 1090 −7.20 ≤ 0.05 −0.80

SD2, D (kgf) 3.40 ± 1.08 5.76 ± 1.71 816 −8.13 ≤ 0.05 −0.91

SD1/SD2, D 0.36 ± 0.12 0.32 ± 0.17 2015 4.04 ≤ 0.05 0.45

AFE, D (kgf2) 13.34 ± 9.36 28.53 ± 8.66 551.5 −9.04 ≤ 0.05 −1.01

HGS, ND (kgf) 33.38 ± 11.27 22.39 ± 7.49 1379.5 6.21 ≤ 0.05 0.69

Fatigue, ND (%) 21.78 ± 10.68 46.23 ± 12.86 520 −9.14 ≤ 0.05 −1.02

SD1, ND (kgf) 1.13 ± 0.33 1.54 ± 0.25 989 −7.54 ≤ 0.05 −0.84

SD2, ND (kgf) 3.38 ± 1.18 5.54 ± 1.68 889.5 −7.88 ≤ 0.05 −0.88

SD1/SD2, ND 0.36 ± 0.13 0.31 ± 0.12 2361.5 2.86 ≤ 0.05 0.32

AFE, ND (kgf2) 12.52 ± 7.65 26.80 ± 8.87 533.5 −9.10 ≤ 0.05 −1.02

HGS hand grip strength, D dominant, ND nondominant, SD standard deviation, AFE area of the fitting ellipse, n number of subjects, U Mann–Whitney’s U-test
values, z scores, p thresholds of statistical significance, r effect size coefficient

Table 6 Results of the simple linear regression analysis for the effect of fatigue on recorded parameters in young and older groups

Variable R R square SE F p Regression equation

Young group (n = 80)

HGS, D 0.62 0.38 9.36 48.24 0.001 y = −0.80 *x + 52.61

SD1, D 0.22 0.05 0.39 4.04 0.048 y = −0.01 *x + 0.99

SD2, D 0.64 0.41 0.83 54.52 0.001 y = 0.08 *x + 1.87

SD1/SD2, D 0.37 0.13 0.11 12.16 0.001 y = −0.01 *x + 0.46

AFE, D 0.50 0.25 8.14 26.58 0.001 y = 0.52 *x + 2.92

HGS, ND 0.53 0.28 9.60 30.77 0.001 y = −0.56 *x + 45.61

SD1, ND 0.02 0.001 0.33 0.05 – y = 0.001 *x + 1.12

SD2, ND 0.51 0.26 1.03 26.88 0.001 y = 0.06 *x + 2.16

SD1/SD2, ND 0.47 0.22 0.12 21.55 0.001 y = −0.01 *x + 0.49

AFE, ND 0.37 0.14 7.16 12.24 0.001 y = 0.26 *x + 6.77

Older group (n = 80)

HGS, D 0.71 0.51 5.81 81.21 0.001 y = −0.37 *x + 41

SD1, D 0.30 0.09 0.25 7.99 0.006 y = −0.01 *x + 1.80

SD2, D 0.53 0.28 1.46 30.69 0.001 y = 0.06 *x + 3.37

SD1/SD2, D 0.68 0.46 0.13 67.68 0.001 y = −0.01 *x + 0.63

AFE, D 0.40 0.16 7.97 15.26 0.001 y = 0.22 *x + 19.34

HGS, ND 0.81 0.65 4.43 147.52 0.001 y = −0.47 *x + 44.15

SD1, ND 0.12 0.02 0.24 1.24 – y = −0.002 *x + 1.65

SD2, ND 0.26 0.07 1.63 5.80 0.018 y = 0.03 *x + 3.96

SD1/SD2, ND 0.39 0.15 0.11 13.97 0.001 y = −0.004 *x + 0.47

AFE, ND 0.16 0.03 8.81 2.07 – y = 0.11 *x + 21.66

HGS hand grip strength, D dominant, ND nondominant, SD standard deviation, AFE area of the fitting ellipse, n number of subjects, R coefficient of correlation, R
square coefficient of determination, SE standard error, F value of F-test for overall significance, p thresholds of statistical significance, x the predictor variable
(fatigue), y the outcome variable
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To our knowledge, the present study is the first to
consider the biomechanical analysis of repetitive HGS
testing through the Poincaré plot method to investigate
the aging process in terms of entropy. Although there
are a few studies that analyze the HGS variation during
serial tests, these included relatively small series of tests,
on the order of 10–15 repetitions. In most cited cases,
such testing protocols have proven to be reliable [34, 47,
48]. The innovation of our study lies in designing an in-
vestigation of the HGS variability during repetitive tests
for young and older subjects by using mathematical
modeling of the recorded data. Thus, for each partici-
pant, a significant number of repetitions of the test was
performed (60 successive tests), feasible for data analysis
through the Poincaré plot method [49].
Following the dynamics of the HGS values during the

serial testing of the subjects, a series of relevant observa-
tions can be made. Interestingly, in several cases, the
maximum values recorded for HGS were not reached
during the first 5 tests in the 60-test series. Hence, the
classic recommendation to perform 3 HGS determina-
tions, of which the highest value is selected [50, 51], is
not always fully relevant to this biomechanical
parameter.
Additionally, for the proposed protocol, muscle fatigue

occurred in an atypical way. Thus, a nonlinear descend-
ent trend in HGS values was observed over time, and
the HGS minimum values were sometimes recorded
prior to the last 5 tests. In addition, there were subjects
with atypical individual evolution during the serial test-
ing. In other words, such situations cannot be excluded,
a fact already confirmed by other authors [52].
For our testing protocol, we considered the occurrence

of muscle fatigue as an inherent phenomenon that de-
creases muscle strength. The nonlinear character of the
HGS during serial testing, however, indicates the vari-
ability of the efficiency of the regulation system of the
imposed motor task. Essentially, muscle fatigue, as a
physiological process, involves complex systems of neu-
romotor and metabolic regulation and might be mea-
sured as the entropy level [53]. Additionally, fatigue is
influenced by the aging process, and older adults seem
to be more susceptible to fatigue during high-speed dy-
namic contractions [54].
Overall, in the young men group, we found a fatigue

effect of 15.89% for the dominant hand and 16.87% for
the nondominant hand. For the young women group,
the mean values were 24.53 and 26.7%, respectively. In
the older men group, the recorded mean values were
34.74 and 38.61%, and in the older women group, they
were 48.09 and 53.84%, respectively. Clearly, the muscu-
lar fatigue of the hand during testing was of a general
nature among the subjects, being more noticeable in
women, regardless of age. Moreover, the described

phenomenon was much broader in older people than
young subjects, which could be explained by the decline
in neuromotor functions associated with the aging
process.
Analyzing the values for R squared from Table 6, we

observe, as expected, that the fatigue influences more
strongly the mean HGS in all situations. In the case of
the parameters derived from the Poincaré plot method,
there are similarities, but also differences in the relations
with the fatigue, as the predictor variable. Overall, the ef-
fect of fatigue is more evident at the level of SD2, SD1/
SD2, and AFE and lower at the level of SD1, for both
hands and age groups. Things are plausible because SD2

reflects the long-term variability and SD1 the short-term
variability. The fatigue effect mainly induces the change
in the long-term variability of HGS. Also, the maximum
effect of fatigue was identified in the case of SD1/SD2 for
the dominant hand of older people, when 46% of the
variation of the parameter is explained by the regressor
fatigue.
The serial testing of the HGS determined the appear-

ance of nonlinear oscillations of the motor performance
of the subjects’ hands, with a decreasing tendency. This
phenomenon can be explained by the gradual appear-
ance of muscle fatigue and by the variability of the effi-
ciency of the neuromotor and metabolic control
mechanisms. Moreover, muscle fatigue itself reflects a
failure of neuromuscular regulation and muscle meta-
bolic adaptation in response to exercise [55]. In other
words, a complex motor task (such as HGS) can be per-
formed successively over time with a certain constant
rhythm as long as the processes described above involve
adaptive capabilities of the movement system. During
aging, the human body, as an open biological system,
manifests limitations of metabolic and functional adapta-
tion to stress factors, which is also reflected in the de-
cline in skeletal muscle performance and physical
performance [56].
The decrement in HGS performance has been re-

ported in other studies that have focused on identifying
HGS endurance during dynamic evaluations [34, 48, 57].
Other authors consider that, at least for repeated series
of 10 consecutive HGS tests, the performance in the test
is quite stable over trials, although there is the expected
fatigue effect, especially for men [47]. However, the lit-
erature on this topic is inconsistent when it comes to
small series of repeat tests [50]. Obviously, the gradual
decrease in HGS by successive testing is generally condi-
tioned by the number of repetitions and by the intervals
between them [58].
A dynamic protocol, for example, of 12 repeated max-

imal repetitions, is recommended for the evaluation of
dynamic HGS endurance, using as reliable indicators the
maximal HGS and the percentage change [59]. In our
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study, the objective of the data series analysis was to
collaterally target the evaluation of HGS endurance,
which was anticipated to occur in the proposed protocol.
Instead, from an entropic perspective, we found that the
mechanical time-series fluctuations of the HGS differed
between the young group and the older group, regard-
less of sex. The obtained indices of variability,
highlighted by the Poincaré plot method, were signifi-
cantly higher for the older group than for the young
group overall, and this difference held in the subgroups
of men and women (p ≤ 0.05).
The results can be interpreted in a more refined man-

ner by taking into account one at a time the SD1, SD2,
SD1/SD2 and AFE indices. As examples, the pattern of
HGS fluctuations (dominant hand) of representative
subjects from the groups of young and older subjects
can be observed in Figs. 1 and 2. The subjects were
chosen according to the mean values of the SD1 and SD2

indices of the groups.
The decrease in HGS force for the young participant

was 18.37% and for the old participant was 41.46%.
Clearly, muscular fatigue was present in both cases and
affected the old subjects more but appeared to be a non-
linear phenomenon. From the entropic perspective, fa-
tigue was associated with greater variability of HGS in
older subjects. As a consequence, the values SD1, SD2,
and AFE were significantly smaller for the younger sub-
jects than for the old ones. Mainly, the mechanisms of
neuromuscular and metabolic control involved in sup-
porting the process of achieving the imposed complex

motor task, which also implies the onset of muscle fa-
tigue, are more deficient in older people.
At the group level, the analysis of SD1 and SD2 indices

argues that performance in HGS is more stable in young
subjects, despite the expected fact that muscle fatigue
occurred for all participants. In fact, the more noticeable
changes occurred in SD2 than in SD1, which reflects the
long-term variability of the time series of data.
The differences between the means of the SD1/SD2 ra-

tio were less extensive and more difficult to interpret,
but they can be presented in terms of the relative uni-
formity of the balance between short- and long-term
variabilities of the time series of data.
Finally, significant differences between groups of

young and older people, regardless of sex, were found in
the AFE values. Generally, an elliptic plot indicates an
oscillating system, and as the ellipse area gets smaller
(the data become more concentrated), the greater the
stability of the system and the lower its entropy is [60].
Conversely, as the ellipse area becomes larger (the data
are more scattered), the tendency to irregularity is more
pronounced, and the system has more variable behavior
and higher entropy.
We demonstrated that the AFE mean values of the

older people were higher than those of young individ-
uals, both for men and women, as well as for the com-
bined groups of men and women. In other words, the
behavior of the organism during HGS testing, as a bio-
mechanical system, signifies a lower level of entropy in
young subjects compared to the older subjects. This

Fig. 1 Typical sample of Poincaré plot of HGS fluctuations
(dominant hand), for a young subject (man). HGS: hand grip
strength; AFE = area of the fitting ellipse

Fig. 2 Typical sample of Poincaré plot of HGS fluctuations
(dominant hand) for an older subject (man). HGS: hand grip
strength; AFE = area of the fitting ellipse
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implies the existence of more marked features of repeat-
ability, uniformity, predictability and homogeneity of the
data series in young adults, which means the system is
functioning in a regime of maximum efficiency and re-
sistance. Instead, the manifestation of the aging process
involves a reduction in system performance in terms of
focus on the task, coordination of movements, steady
rhythm of HGS development, and earlier occurrence of
muscle fatigue. In brief, overall, the degree of disorder of
these elements in the context of achieving the required
task signifies higher entropy in the older organism.
From the entropic perspective, hand sensorimotor

function has been studied by other authors, for example,
in the case of diabetes mellitus. In these patients, there
was a reduced force structural complexity of the hand
(lower approximate entropy values) than in healthy sub-
jects when producing grip force during submaximal
force production tasks [61]. Additionally, in other
pathologies, such as stroke, the increased force variabil-
ity constitutes a hallmark of arm disabilities [62]. In
multiple sclerosis, the fatigability of repeated hand grip
strength is correlated with disease progression [57], and
aging causes an increase in the motor output variability
during rapid discrete isometric contractions [63].
Clearly, in terms of entropy, the pathological and aging

systems are less complex than healthy systems, and this
finding has been attributed to the degraded physiological
control processes [64]. The interpretation of our results
converges to the same idea, showing that the proposed
repetitive HGS testing evidences statistically significant
differences between young and older healthy people.
Through the mathematical modeling of data and the ap-
plication of the concept of entropy, we provide argu-
ments supporting this new design of HGS testing.

Limitations of the study
This study has some limitations. First, the proposed test
is more complex than it seems, and the collected results
can be considered significant only to the extent that the
premises of rigorous testing are provided. Practically, in-
terindividual differences can be reported regarding the
participant’s involvement in meeting the requirements of
the testing methodology. Second, the number of succes-
sive tests and proposed timeframes can be resized, de-
pending on the objectives of the study and the resources
of the subjects being tested. Last but not least, we did
not consider variables such as the participants’ comor-
bidities or lifestyle that could interfere with HGS assess-
ment. An extrapolation of the experimental design for
other types of individuals, with functional limitations,
should be reconsidered through a reduction of the num-
ber of serial tests and/or an increase in the pauses be-
tween contractions. In the future, by studying large
samples of participants in several age groups and taking

into account composite variables, the possible proced-
ural errors can be mitigated.

Conclusions
Our results indicate that the variability of HGS during
serial testing represents an efficient indicator for differ-
entiation between young and older hand function pat-
terns from an entropic perspective. The fatigue effect is
present at the level of the dynamics of the recorded en-
tropic parameters and should be considered as an im-
portant factor for data interpretation. Obviously, aging is
manifested in the level of hand functionality through the
time performance fluctuations of the task of achieving
repetitive HGS. This fact can be interpreted in the sense
of the functioning of the senescent organism as a system
characterized by irregularity and oscillation, and there-
fore with the tendency to increase entropy.
In practical terms, the variability of HGS, evaluated by

the new serial testing design, can be considered an at-
tractive and relatively simple biomarker to use for geron-
tological studies. The method of analysis of HGS time
series according to the Poincaré plot technique has the
potential for development and refining in the future for
extensive clinical applications as well as for the delimita-
tion of normal and pathological aging.
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