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Abstract

Background: The conventional scores of the neuropsychological batteries are not fully optimized for diagnosing
dementia despite their variety and abundance of information. To achieve low-cost high-accuracy diagnose
performance for dementia using a neuropsychological battery, a novel framework is proposed using the response
profiles of 2666 cognitively normal elderly individuals and 435 dementia patients who have participated in the Korean
Longitudinal Study on Cognitive Aging and Dementia (KLOSCAD).

Methods: The key idea of the proposed framework is to propose a cost-effective and precise two-stage classification
procedure that employed Mini Mental Status Examination (MMSE) as a screening test and the KLOSCAD
Neuropsychological Assessment Battery as a diagnostic test using deep learning. In addition, an evaluation procedure
of redundant variables is introduced to prevent performance degradation. A missing data imputation method is also
presented to increase the robustness by recovering information loss. The proposed deep neural networks (DNNs)
architecture for the classification is validated through rigorous evaluation in comparison with various classifiers.

Results: The k-nearest-neighbor imputation has been induced according to the proposed framework, and the
proposed DNNs for two stage classification show the best accuracy compared to the other classifiers. Also, 49
redundant variables were removed, which improved diagnostic performance and suggested the potential of
simplifying the assessment. Using this two-stage framework, we could get 8.06% higher diagnostic accuracy of
dementia than MMSE alone and 64.13% less cost than KLOSCAD-N alone.

Conclusion: The proposed framework could be applied to general dementia early detection programs to improve
robustness, preciseness, and cost-effectiveness.
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Background
Neuropsychological assessments are essential for early
diagnosing dementia and monitoring progression of
dementia in both clinical and research settings, in
advance of high-cost neuroimaging-based diagnoses such
as magnetic resonance imaging (MRI) and positron
emission tomography (PET). However, the abundant
information of neuropsychological batteries other than
their conventional total and/or subscale scores are
not optimally employed in diagnosing and/or subclas-
sifying dementia. [1–4]. In our previous works, we
showed that a simple cognitive test such as a cat-
egorical verbal fluency test would provide an accu-
rate diagnostic reference of dementia if we employed
various response patterns in the test instead of its sim-
ple total score [5, 6]. In this regard, neuropsycholog-
ical batteries that consist of multiple cognitive tests
for evaluating multiple cognitive domains may improve
the diagnostic accuracy of dementia considerably if we
employ the response patterns of multiple cognitive tests
together instead of conventional total and/or subscale
scores.
Recently, data mining has shown remarkable perfor-

mance in various fields including the medical fields [7].
Data mining is an interdisciplinary field of statistics,
machine learning, visualization, database systems, and so
on [8]. It focuses on discovering new meaningful infor-
mation from a large dataset and provides us the infor-
mation as understandable structure [8]. Especially, deep
learning has recently emerged owing to big data and
high-performance computing power. The deep learning is
capable of exploiting the unknown structure from data to
discover good representation. Thanks to this representa-
tion learning, the deep learning has overcome previous
limitations of conventional approaches. Furthermore, the
deep learning made great contributions to major advances
in diverse fields including bioinformatics and medicine
[9–15]. As we discussed ahead, although a large num-
ber of neuropsychological assessment data have been
accumulated, hidden patterns in the data are not fully
analyzed yet. To analyze the neuropsychological assess-
ment data, the data mining using deep learning tech-
niques can be utilized as a suitable approach. Mani et al.
[16] first applied the data mining approach to neuropsy-
chological assessment data, but simple classifiers were
used to show the possibility of data mining application
to neuropsychological data. Leighty [17] and Maroco et
al. [18] provided the useful comparison on applications
of multiple machine learning classifiers to neuropsycho-
logical assessment data, but these research studies did
not consider variable redundancy, which may cause the
performance degradation arising from the curse of dimen-
sionality. Lemos [19] applied variable selection algorithms
to overcome the curse of dimensionality, but the approach

just removed the data with missing values, whichmay lead
to loss of information.
In this paper, to develop a practical data mining frame-

work overcoming the issues raised in the previous works,
we propose a deep learning based low-cost and high-
accuracy diagnostic framework of dementia with the
response profiles of the Korean Longitudinal Study on
Cognitive Aging and Dementia Neuropsychological Bat-
tery (KLOSCAD-N). The framework includes design
procedures on missing data imputation, input variable
selection, and cascaded classifier design for cost effec-
tive classification. First, in contrast to the previous works
discarding the missing data samples which lead to infor-
mation loss, we introduce a missing data imputation
procedure to increase the accuracy and robustness in
data analysis. Second, to maximize the diagnostic per-
formance, a deep neural networks (DNNs) architecture
are designed and validated in comparison with the other
well-known classifiers. Third, to prevent a degradation
of classification performance arising from the useless or
redundant variables, we suggest a procedure to check the
existence of useless or redundant variables and prune
them. Fourth, we design a two-stage classifier to reduce
time and cost for diagnosis using KLOSCAD-N and
MMSE.

Methods
Figure 1 depicts the overall scheme of the proposed diag-
nostic framework which includes five steps: (1) acquisi-
tion of KLOSCAD-N response profiles, (2) imputation
of missing variables, (3) design of DNNs and validation
by comparing with other classifiers, (4) input variable
selection based on mutual information, and (5) design
of two-stage classification scheme via the combination of
MMSE and KLOSCAD-N. This study was approved by the
institutional review board of Seoul National University of
Bundang Hospital. The details of each step are provided
in the following.

Subjects
We analyzed the KLOSCAD-N response profiles of 2666
cognitively normal elderly (CNE) individuals and 435
dementia patients. The CNE individuals were the par-
ticipants of the Korean Longitudinal Study on Cognitive
Aging and Dementia (KLOSCAD), which is a community-
based longitudinal study of cognitive aging and dementia
of community-dwelling Korean elderly cohort [20]. The
dementia patients were either participant of the KLOC-
SCAD or visitors to the 14 dementia clinics that partic-
ipated in the KLOSCAD. All subjects were 60 years or
older. We excluded subjects with major axis I psychiatric
disorders, such as major depressive disorder, and those
who had serious medical or neurological disorders that
could affect cognitive functions. The demographic and
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Fig. 1 Overall scheme. The proposed diagnostic framework includes five steps. a Data Acquisition, bMissing Data Imputation, c Design and
Validation of Classifier, d Input Variable Selection, e Two-stage Classification

clinical characteristics of the subjects are summarized in
Table 1. The 20% of subjects were randomly chosen as a
test dataset for evaluating the proposed framework. The
test dataset was not used in any of training procedure.
Using the remaining 80% of subjects as a train dataset,
we carried out five-fold cross-validation for training and
model selection.

Diagnostic Assessments
Research neuropsychiatrists evaluated each subject using
a standardized clinical interview, physical and neurolog-
ical examinations, and laboratory tests according to the
protocol of the Korean version of the Consortium to
Establish a Registry for Alzheimer’s Disease Assessment

Table 1 Characteristics of the subjects

Controls Dementia Statistics

CDR=0.5 CDR=1 For X2 post hoc‡

Number 2666 189 246

Age (years) 69.54± 75.01± 76.61± 174.927∗∗∗ a < b

6.52a 7.23b 7.43b

Sex 53.2 56.6 65.4 20.138∗∗

(female, %)

Education 9.57± 8.40± 6.61± 30.520∗∗ a > b > c

(years) 5.33a 5.75b 5.75c

∗∗∗p < .001, ∗∗p < .01, ‡Games-Howell post hoc comparisons
a, b, c: the same letters indicate homogeneous groups

Packet (CERAD-K) [21] and the Mini International Neu-
ropsychiatric Interview (MINI) version 5.0 [22]. When
dementia was suspected, brain computerized tomogra-
phy (CT) or magnetic resonance imaging (MRI) was also
performed. The subjects diagnosed as having demen-
tia according to the criteria of the fourth edition of
the Diagnostic and Statistical Manual of Mental Disor-
ders (DSM-IV) (American Psychiatric Association 1994)
were enrolled in the dementia group. The global sever-
ity of dementia was determined according to the Clinical
Dementia Rating (CDR) [23].

Neuropsychological assessments
Trained research neuropsychologists who were blind to
the diagnosis of the subjects administered the KLOSCAD-
N to each subject. The KLOSCAD-N consists of the
Korean version of the Consortium to Establish a Registry
for Alzheimer’s Disease Assessment Neuropsychologi-
cal Battery (CERAD-N) [21, 24], Digit Span Test (DST)
[25], Frontal Assessment Battery (FAB) [26], and Execu-
tive Clock Drawing (CLOX) [27]. The CERAD-N consists
of nine neuropsychological tests: Categorical Verbal Flu-
ency Test (CVFT), 15-item Boston Naming Test (BNT15),
MMSE, Word List Memory Test (WLMT), Construc-
tional Praxis Test (CPT), Word List Recall Test (WLRT),
Word List Recognition Test (WLRCT), Constructional
Recall Test (CRT), and TrailMaking Test A and B (TMT-A
and TMT-B). Conventionally, test scores of the nine neu-
ropsychological tests were used to ascertain the presence
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of cognitive impairment objectively in diagnosing demen-
tia and monitor the progress of cognitive impairment
objectively with advancing dementia.

Missing data imputation
Inputs with missing values is unable to apply most
of supervised machine learning models including deep
learning. On the other hand, since the missing values
often appear in neuropsychological tests, it is necessary to
make up the missing values in order to apply the model to
the subjects having the missing values. Among the 3101
samples of KLOSCAD-N response profiles, 75 have at
least one missing value. Samples with one or two miss-
ing values are most frequent. CLOX1 and CLOX2 scores
have the most frequent missing values. We have imple-
mented four imputation methods: minimum-maximum
(MinMax) imputation, k-nearest-neighbor (kNN) imputa-
tion [28], multiple imputations (MI) (Schafer 1999), and
local least squares (LLS) imputation [29].
First, the MinMax imputation method is based on the

assumption that themissing is caused by the subject’s defi-
ciency. The missing values are imputed according to the
correlation between variables and labels. If the correlation
is positive (or negative), the missing value is imputed with
themaximum (orminimum) value of the variable. Second,
the kNN imputation method attributes the missing values
using the information of other subjects with a similar pat-
tern in that sense of the nearest neighbor. After finding k
number of neighbors, the imputation value is computed
by averaging the values of those neighbors. In this study,
Euclidean distance is used, and k is set to 5 empirically
via experiments. Third, the MI method provided by the
SPSS software is the most popular method in statistics,
which has been developed to solve a single imputation’s
underestimating problem. Themissing values are replaced
by averaging a number of complete datasets which are
estimated by the Monte Carlo technique. Each estimated
complete dataset is imputed by linear regression. Lastly,
the LLS imputation method shows the best performance
for the missing value estimation on microarray data [30].
After finding the top k number of relevant genes (vari-
ables) using Pearson correlation, the target gene and
its missing value are obtained by a linear combination
of those relevant genes through solving a least squares
problem.
Each method is evaluated in two ways: direct evaluation

via error computation and indirect evaluation via classifi-
cation performance. The direct evaluation is to compute
an error between the original value and the imputed value.
After we randomly generate artificial missing data from
the complete data by considering the missing ratio in each
variable, four kinds of imputation values for the artifi-
cial missing data are obtained through the four methods,
respectively. The error between the original value and

the estimated values is computed by matrix Euclidean
norm. The indirect evaluation is to check a classifica-
tion performance on imputed samples using the classi-
fier trained with the complete data. By utilizing the four
kinds of imputed samples generated by the four meth-
ods, respectively, we check which method shows the best
classification performance by various classifiers.

Constructing deep learning classifiers
Artificial neural network (ANN) is a computation model
inspired by the biological brain. The hidden layer of ANN
takes a role of feature extraction from input or lower hid-
den layer information. The responses in the hidden layer
represent features extracted via a linear transformation
of inputs and a nonlinear activation functions. The DNN
is a kind of ANN with deep hidden layers between the
input and output layers. The deep layers composite the
features from lower layers hierarchically, and learn com-
plex data by associative memorizing through connection
weights [31].
To construct a promising diagnosis framework, we

design the DNNs for MMSE and KLOSCAD-N respec-
tively. Since MMSE is composed of only five dimension
(four demographic variables and one MMSE total-score),
the fully-connected network (FCN) is enough to cover this
simple classification problem. For KLOSCAD-N, we con-
struct a two dimensional convolutional neural network
(2D-CNN) to achieve the best performance. As shown in
Fig. 2, we cascade a fully-connected layer following the
convolutional layers. Also skip connection [32] is utilized
to explicitly feed low level features to the output layers.
In addition, we reshape the input into 2D image-like form
with the Hilbert space-filing curve [33] which has been
successfully used for DNA sequence classification with
CNN [34]. Hilbert curve, which is shown in Fig. 2, give a
mapping 1D to 2D space that fairly well preserves locality.
Since our data is a sequence of assessments followed by
demographic information, continuity and clustering prop-
erty of Hilbert curve would be appropriate for our data
characteristics. To prevent an over-fitting, dropout [35],
batch normalization [36] and early stop training technique
is applied. In this study, the ratio of the negative label sam-
ples to the positive label samples is approximately 9 : 1
because the positive samples indicating the subjects of
dementia are relatively rare compared to the negative sam-
ples indicating normal subjects. To solve this problem, the
cost-sensitive loss is defined as (1) by multiplying a weight
with the positive target.

lc(yi, ŷi) = −wcyi log ŷi − (1 − yi) log(1 − ŷi), (1)

where yi is target value, ŷi is predicted value, and
wc = (# of positive)/(# of negative). To achieve the opti-
mal architecture, we empirically evaluate the model with
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Fig. 2 Architecture of proposed deep neural networks for KLOSCAD-N assessment and demographic information

all combination of hyper-parameters as follows: the num-
ber of convolution layer: [1, 4], the number of filters:
32, 64, 128, kernel size: [2, 4], the number of fully con-
nected layer: [1, 4], and the number of hidden unit:
32, 64, 128.
In addition, empirical evaluations are conducted for

other architectures of DNNs such as 1D-CNN, fully-
connected networks (FCN). Also we compare with the
transfer learning by adopting a pre-trained model (Nas-
Net [37]) since NasNet is capable to handle low dimen-
sional inputs unlike other networks for imagnet. Also
we compare our classifier with six well-known classifiers:
XGBoost [38], Adaboost [39], Random Forest [40], Bag-
ging [41], SVM [42], and Logistic Regression [43]. Hyper-
parameters are empirically established through greedy
search. Each algorithm is implemented by calling the
java object of libSVM [44] and Weka [45] in MATLAB.
To evaluate the generalization of each classifier, a five-
fold cross validation on train dataset is applied. The
area under curve (AUC) is used as the main evaluation
metric.

Input variable selection
Since useless or redundant variables cause a degradation
of classification performance due to a curse of dimension-
ality, it is necessary to check the existence of useless or
redundant variables among KLOSCAD-N. Furthermore,
by eliminating the redundant variables, the assessment
time and monetary costs can be reduced. If there is a
hierarchical property between variables, it is difficult to
independently remove each variable. In this study, we thus
do not consider subtotal variables that belong to the upper
part of the hierarchical structure but use only the scores
of the lowest-level variables. The relationships (or hierar-
chical properties) among the selected variables are then
analyzed through the 2D-CNN.
For this purpose, we adopt the feature selection tool-

box (FEAST) [46] which provides a computation toolbox
of mutual information and other information theoretic

functions. FEAST calculates the ranking of all variables
by their contribution of information. In our work, we uti-
lize eight functions in FEAST: MIM, MRMR, CMIM, JMI,
DISR, CIFE, ICAP, and CONDRED (see [46], the paper of
FEAST toolbox, for details of each function). The ranking
information of the eight functions is combined to deter-
mine the final ranking of each variable in an ensemble
manner. For each variable, the eight ranking scores are
averaged. The averaged ranking score is used to determine
the ranking order of each variable.
Let Si, i = 1, ...,m be the variable set containing i num-

ber of variables in ranking order. For example, S1 only
includes the highest ranked variable, and S5 includes the
variables from the first rank to the fifth rank. Then the
classification performance is evaluated for each set Si,
and the set with the maximum performance is denoted
by Smax. DeLong’s test [47] is a statistical nonparametric
approach to check whether two area under curve (AUC)
values are having significant different. If the p-value from
the test is less than 0.05, this indicates that the two sets
show significant differences in AUC performance. Con-
versely, if the p-value is greater than 0.05, it can be judged
that there is no significant loss of AUC performance
between the two sets. Since the goal is to select the set
with the lowest number of variables without loss of perfor-
mance, we finally choose the set with the smallest number
of variables from Si with p-value over 0.05.

Two-stage classification
MMSE is the most popular screening test for demen-
tia [20, 21, 48, 49]. MMSE is advantageous at low cost,
but it is known to be less accurate than high-cost bat-
teries such as KLOSCAD-N. Therefore, we propose a
novel framework that combines the advantages of MMSE
and KLOSCAD-N. In the first stage, MMSE is applied
as a coarse screening test, and in the second stage, the
KLOSCAD-N is administered for a fine diagnosis. If the
candidate for KLOSCAD-N can be reduced through the
first stage (MMSE) in advance without loss of diagnostic
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performance, a low-cost and high-performance diagnostic
framework could be established.
The brief block diagram of the two-stage classification

framework is shown in Fig. 1e. The suggested framework
has been established using the DNNs which showed the
best performance among the other classifier on each test
in the classifier comparison step. The MMSE total-score
and demographic information are utilized to decide the
further execution of the second stage, KLOSCAD-N, or
not. By changing the threshold on the first-stage decision
score to pass the subjects to the second-stage, we com-
pute the cost and accuracy of the two-stage classification
framework with test dataset. The cost is defined as

cost = nall × cM + n2 × cK , (2)

where cM and cK is the cost per single subject of MMSE
and KLOSCAD-N respectively, nall is the number of all
subjects, and n2 is the number of subjects who need the
second-stage. Based on Korean insurance fees, the cost
of each assessment per subject is approximately 10 USD
and 180 USD for MMSE and KLOSCAD-N, respectively.
We determine the best threshold on the decision score
which shows the lowest cost while the performance does
not show loss of classification performance.

Results
Missing data imputation
As suggested in the “Missing data imputation” section, the
four imputation methods were evaluated via two ways,
and the best imputation method was chosen. The first
evaluation result (Euclidian norm) which gives the error
between the original value and the imputed value was
1438.5621 for MinMax, 196.2499 for kNN, 255.7012 for
MI, and 245.9988 for LLS. kNN had the smallest Euclidean
error, whereas MinMax had the largest error. In con-
sequence, kNN was evaluated to reconstruct the miss-
ing variable with the most similar value to the original
one. Table 2 shows the result of the second evaluation
approach, where the validity of imputed data had been
evaluated by the classification performance tested via six
classifiers trained with the complete data. Every classifier,
except SVM, showed the best performance on kNN-based
imputed data, whereas SVM showed the best performance
on LLS. According to the result, kNN imputation method

is chosen as the best one for the completion of missing
values in KLOSCAD-N.

Classifier validation
As we mentioned in the “Constructing deep learning
classifiers” section, hyper-parameters for every candidate
model were searched via greedy search. The best FCN for
MMSE is composed of one layer with 128 number of hid-
den units. The best 2D-CNN model for KLOSCAD-N is
composed with two convolutional layers which contains
128 and 32 number of filters respectively with kernel size
of 2, and two fully connected layers with 64 hidden units.
Skip connection leads to a performance improvement
over all structures. For 2D-CNN, our input reshaping
method with Hilbert curve achieves higher performance
than naïve reshaping method that simply stacks a sliced
1D input to form of 2D matrix (see the second column in
Table 3).
Transfer learning with weights pretrained from ima-

genet (NasNet) has shown AUC value of 0.9813, which
is smaller than those of the other networks trained with
random initialization. This implies the pretrained infor-
mation from imagenet datasets is not helpful to solve our
problem. Table 3 shows the classification performance of
various deep learning architectures from five-fold cross
validation. For MMSE, the designed FCN in our work
has AUC value of 0.9702. For KLOSCAD-N, the proposed
architecture for 2D-CNN shows the best performance
(AUCvalueof 0.9863) amongall the candidate architectures.
Table 4 shows the classification performance of other

type of classifiers. For both MMSE and KLOSCAD-N,
the proposed DNNs show the best performance. It is
known that the DNNs show inherently a good general-
ization capability, even its large number of parameters
when trained with the sufficient number of train data
samples. As a result, our dataset is enough to achieve rea-
sonable performance for the both assessment using the
designed DNNs.
Table 5 shows the comparative efficiency of the pro-

posed two-stage classification in view of various met-
rics including the cost. As shown in the fourth and
fifth columns, the existing works for KLOSCAD-N and
MMSE do not show good performance relatively because
they rely on the simple total score of KLOSCAD-N or
MMSE. As shown in the first and third columns DNNs

Table 2 Classification performances on the imputed dataset indicated by the area under the receiver operator curve (AUC)

Proposed DNNs XGBoost Logistic Regression Random Forest Adaboost Bagging Support Vector Machine

MinMax 0.9489 0.9506 0.9083 0.9405 0.9149 0.9334 0.8898

kNN 0.9603 0.9541 0.9356 0.9466 0.9444 0.9559 0.9321

MI 0.9586 0.9524 0.9312 0.9211 0.9184 0.9418 0.9347

LLS 0.9594 0.9471 0.9295 0.9343 0.9109 0.9339 0.9383

MinMax: minimum-maximum imputation, kNN: k nearest neighbor imputation, MI: multiple imputation, LLS: local least square imputation
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Table 3 Classification performances of various deep neural network architectures on Mini Mental Status Exam (MMSE) and Korean
Longitudinal Study on Cognitive Aging and Dementia Neuropsychological Battery (KLOSCAD-N) indicated by the area under the
receiver operator curve (AUC) via five-cross validation on train dataset

2D-CNN 2D-CNN Naïve 2D-CNN w/o SC 1D-CNN 1D-CNN w/o SC FCN FCN w/o SC NasNet

MMSEa mean - - - - - 0.9702 0.9583 -

std - - - - - 0.0144 0.0139 -

KLOSCAD-N mean 0.9863 0.9850 0.9782 0.9848 0.9805 0.9830 0.9771 0.9813

std 0.0048 0.0058 0.0057 0.0053 0.0042 0.0060 0.0070 0.0046

aSince MMSE is composed with only five dimension (four demographic variables and one MMSE total-score, the other architecture are not applicable except FCN

improves the accuracy with 2.90% for MMSE and 6.61%
for KLOSCAD-N compared to the existing methods
because it can utilize the hidden patterns of input vari-
ables (demographic information, subscale scores, and so
on). As shown in the second column, the proposed two-
stage classification framework shows the best efficiency
through all evaluation metrics with a reasonable cost
(Details are discussed in the following section on two
stage classification).

Input variable selection
The final rankings of 92 input variables were yielded
through the ensemble of eight methods for feature selec-
tion provided in FEAST. The performances on the input
variable sets, Si, i = 1, ..., 92, are shown in Fig. 3. As shown
in Fig. 3, the performance increases as the variables are
added one by one in order from the highest-ranking vari-
able, but the degree of increase lessens after 30 variables
and becomes saturated after 43 variables. The best perfor-
mance was achieved with 92 variables which are depicted
as red boxplot in Fig. 3. Among Si, we removed the vari-
able set (gray boxplot) that showed a significant difference
(p < 0.05 on DeLong’s test) with the best-performed
variable set Smax (red boxplot). Among the remaining can-
didate variable set (blue boxplot and red boxplot), we
chose the final variable set which contains the least num-
ber of variables. As a result, we could reduce the number
of variables 92 to 43. The final variable set and variable
ranking information is described in Table 6.

Two-stage classifications
Accordingly, at two-stage classification, performance and
cost were evaluated by changing the threshold of the first

stage classification on MMSE to pass subjects to the sec-
ond stage (KLOSCAD-N). The results are shown in Fig. 4.
Figure 4a shows a value of sensitivity and specificity as
a function of threshold on the first classification. It is
noted that the two curves meet at the threshold of 0.075,
and the point is referred to as equal error rate (EER).
Figure 4b shows the trends of performance and cost in
the threshold range [ 0, 0.075]. As shown in Fig. 4b, the
higher threshold (fewer subjects take KLOSCAD-N) leads
to the less performance and cost. On certain the thresh-
old, f1 scores are smaller than that of when the threshold
is zero. In conclusion, at threshold equal to 0.0362, the
proposed framework save as much as cost without loss
of performance. The second column in Table 5 is the
final performance of the proposed two-stage classifica-
tion. As a result of the proposed combination of MMSE
and KLOSCAD-N, the cost is reduced by 64.13% without
loss of accuracy compared to the case that every subject
takes KLOSCAD-N (the first column in Table 5).
Figure 5 is the histogram distribution of the MMSE

scores of the test dataset subjects. Subjects that require
only first-stage are represented by hatched bars and are
represented by shaded bars that require a second-stage.
Two groups are roughly divided by point 26, but there
are still overlapping parts. The existence of overlapping
means that the MMSE score alone can not make a clear
diagnosis. In other words, in order to judge whether or not
to take the second-stage more clearly, it is necessary to use
the designed DNNs.

Discussion
Comprehensive neuropsychological assessments, in spite
of their variety and abundance of information, have not

Table 4 Comparative analysis with other conventional classifiers indicated by the area under the receiver operator curve (AUC) via
five-cross validation on train dataset

Proposed DNNs XGBoost AdaBoost Random Forest Bagging Support Vector Machine Logistic Regression

MMSE mean 0.9702 0.9605 0.9573 0.9581 0.9631 0.9627 0.9642

std 0.0144 0.0144 0.0171 0.0192 0.0169 0.0196 0.0171

KLOSCAD-N mean 0.9863 0.9850 0.9774 0.9762 0.9724 0.9744 0.9807

std 0.0048 0.0065 0.0107 0.0079 0.0069 0.0093 0.0080
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Table 5 Comparative results of two-stage classification on test dataset

KLOSCAD-N w/ DNNs Proposed
Two-stage
Classification

MMSE w/ DNNs KLOSCAD-N w/o DNNs MMSE w/o DNNs

Accuracy (%) 92.74 92.90 87.74 86.13 84.84

AUC 0.9790 -a 0.9383 0.9349 0.9143

F1 Score 0.7805 0.7800 0.6667 0.6356 0.6179

Sensitivity 0.9287 0.9343 0.8780 0.8621 0.8736

Specificity 0.9195 0.8966 0.8736 0.8612 0.8443

Likelihood Ratio Plus 11.5425 9.0319 6.9446 6.2092 5.6097

Likelihood Ratio Minus 0.0775 0.0732 0.1396 0.1602 0.1498

Positive Predictive Value 0.5673 0.5064 0.4410 0.4136 0.3892

Negative Predictive Value 0.9913 0.9917 0.9844 0.9821 0.9833

Pre Test Odd 0.1136 0.1136 0.1136 0.1136 0.1136

Post Test Odd 1.3111 1.0259 0.7888 0.7053 0.6372

Post Test Probability 0.5673 0.5064 0.4410 0.4136 0.3892

Costb $111,600 $40,030 $6,200 $111,600 $6,200

aSince each stage provides their own probability, single AUC value can not be calculated
bTotal cost for test dataset including 620 subjects

been optimally employed for diagnosing and/or sub-
classifying dementia by their conventional total and/or
subscale scores. In the current study, we developed a
low-cost high-accuracy diagnostic framework for diag-
nosing dementia using a comprehensive neuropsychologi-
cal battery that includesMMSE. The proposed framework
proceeds through four steps: missing data imputation,
classifier validation, input variable selection, and two-
stage classifications.
Although neuropsychological batteries can provide use-

ful diagnostic information (such as reaction patterns and
inter-correlations among them), only overall performance
(such as total scores or subscale scores) has been quanti-
fied so far in both clinical and research settings. Even if

we simultaneously used data frommultiple cognitive tests,
we could not have improved the diagnostic accuracy for
dementia if we had used only the overall performance of
each test. For example, Seo et al. [2] proposed the total
score of CERAD-N (CERAD-TS), which was a simple sum
of multiple cognitive test scores included in the CERAD-
N. However, the diagnostic accuracy of the CERAD-TS for
dementia was only approximately 3% higher than that of
MMSE in a given population.
In our previous work, we showed that the reaction

patterns of cognitive tests may provide better perfor-
mance in diagnostic dementia than simple total scores of
the tests [5, 6]. For example, patients with Alzheimer’s
showed impaired knowledge-based semantic associations
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Fig. 3 Dependency on the variables. Trends of the area under the receiver operator curve (AUC) as a function of the number of variables included in
order from the highest ranging variable
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Table 6 Top 43 variables selected for classifying dementia from
normal controls

Ranking Variable description

1 Time to complete the Trail Making Test A
2 Retention index of Constructional Recall Testa
3 Age
4 Response bias index of the Word List Recognition Testb
5 Recency index of the Word List Memory Testc
6 Executive Clock Drawing Test (CLOX) 1 score
7 Consistency index of the Word List Memory Testd
8 Correct responses at the second quarter (15–30 s) in the

Verbal Fluency Test
9 The number of repetitive recalls in trial 3 of the Word List

Memory Test
10 Geriatric Depression Scale score
11 Cube recall score of the Constructional Recall Test
12 Clustering index of Verbal Fluency Test
13 Correct responses in the middle-frequency objects of the

15-item Boston Naming Test without cues
14 The number of correct recall in trial 2 of the Word List Memory

Test
15 Digit Span Test Forward score
16 Years of education
17 Perceptual error index in the low-frequency objects of the

15-item Boston Naming Test
18 Ineffective switch index of the Verbal Fluency Test
19 Retention index of the Word List Recall Teste
20 Consistency index of the Word List Recall Testf
21 Primacy index of the Word List Memory Testg
22 Word List Recall Test score
23 Switch index of the Verbal Fluency Testh
24 The number of correct recall in trial 1 of the Word List Memory

Test
25 Forward span of the Digit Span Test
26 Word List Recognition Test total score
27 Correct responses in the low-frequency objects of the 15-item

Boston Naming Test with phonemic cues
28 Learning curve of the Word List Memory Testi
29 Digit Span Test Backward score
30 Correct responses at the last quarter (45–60 s) in the Verbal

Fluency Test
31 Constructional Recognition Test score
32 Go-No-Go score of the Frontal Assessment Battery
33 The umber of correct recall in trial 3 of the Word List Memory

Test
34 Correct responses in the high-frequency objects of the

15-item Boston Naming Test without cues
35 Correct responses at the first quarter (0–15 s) in the Verbal

Fluency Test
36 ’Do not know’ responses in the low-frequency objects of the

15-item Boston Naming Test
37 The number of intrusion errors in the Word List Recall Test
38 Intersecting rectangles recall score of the Constructional

Recall Test
39 Recency index in trial 1 of the Word List Memory Test
40 Correct responses at the third quarter (30–45 s) in the Verbal

Fluency Test
41 Backward span of the Digit Span Test
42 Diamond recall score of the Constructional Recall Test
43 Cube score of the Constructional Praxis Test

a(Constructional recall test score/constructional praxis test)×100
b(False positive score−false negative score)/(false positive score+false negative
score)
c(The number of recalled words among the last 3 words of the Word List Memory
Test/Word List Memory Test score)×100
dThe sum of the numbers of words consistently recalled in between trial 1, trial 2
and trial 3 of the Word List Memory Test
e(Word List Recall Test total score/trial 3 score of Word List Memory Test)×100
f(The number of words consistently recalled in the World List Recall Test among the
recalled words in the Word List Memory Test) × 100
g(The number of recalled words among the first 3 words of the Word List Memory
Test/Word List Memory Test score)×100
hThe number of switches between clusters during Verbal Fluency Test
iThe number of recalled words in trial 3 of the Word List Memory Test - the number
of recalled words in trial 1 of the Word List Memory Test

compared with the cognitively normal elderlies who had
the same overall performance in the categorical verbal
fluency test as the Alzheimer’s disease patients [5]. In
addition, we showed that we could improve the diagnostic
accuracy for dementia of categorical verbal fluency tests
by approximately 10% if we used reaction patterns in the
test instead of the total score of the test [6].
Therefore, we may improve the diagnostic accuracy for

dementia if we can use the hidden patterns of responses
in the multiple cognitive tests included in neuropsycho-
logical batteries simultaneously. Data mining approaches
have shown remarkable performance in discovering new
meaningful information from large datasets and summa-
rizing the information in understandable structure [8].
As we discussed earlier, although a large amount of neu-
ropsychological assessment data have been accumulated,
hidden patterns in the data have not been fully analyzed
yet. The proposed framework achieved better improve-
ments in diagnostic performance than the CERAD-TS [2]
as shown in the fourth column in Table 5. The improve-
ment compared with CERAD-TS was +6.61% for accu-
racy, 0.044 for AUC, and +0.14 for f1 score.
There were some studies to improve screening accuracy

for dementia with MMSE by supplementing other brief
cognitive test scores [50] or informant questionnaires [51].
However, it has never been studied whether and how
much the supplementation of comprehensive neuropsy-
chological batteries can improve diagnostic accuracy for
dementia. To the best of our knowledge, our methodol-
ogy is the first approach that cascades the screening test
(MMSE) and the neuropsychological battery (KLOSCAD-
N) for diagnosing dementia.
The proposed framework is effective in three aspects.

First, by the proposed two-stage classification approach,
71,570 USD (64.13%) of the cost for 620 subjects was
evaluated to be saved without loss of classification perfor-
mance. Second, through the variable selection step, it was
confirmed that only a small amount of KLOSCAD-N vari-
ables with 2D-CNN achieved higher performance than
the full number of variables. This implies that it is pos-
sible to develop more compact assessments with saving
time and monetary cost. Third, The proposed framework
will be implemented and distributed as a form of software.
Non-expert will also be able to obtain additional informa-
tion about the diagnosis of dementia in addition to the
total score by entering the results of the neuropsycholog-
ical tests into the software. It is expected that the social
cost for the overall diagnosis of dementia can be reduced
by increasing the usefulness of clinical neuropsychological
tests and the possibility of early diagnosis of dementia.
Regarding the limitation of our framework, the diagno-

sis only focuses on a binary classification problem (nor-
mal versus dementia). As for future works, the proposed
framework can be extended to a multi-class classification
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problem such as dementia progress classification (nor-
mal versus mild cognition impairment verses dementia)
or dementia type classification (Alzheimer’s disease versus
vascular dementia versus dementia with Lewy bodies, and
so on). However, neuropsychological assessments alone
may not be enough to diagnose specific dementia types. In

Fig. 5 Histogram of MMSE scores. The distribution of the MMSE scores
of the test set subjects requiring only first-stage and those requiring
two-stages. The two distributions are roughly divided around 25
points, but can not be clearly distinguished only by the MMSE score

fact, to diagnose the specific dementia types, neuroimag-
ing techniques (MRI and PET) and genetic analysis are
performed. Cascading these advanced tests as the next
stage of the proposed two-stage classification will fur-
ther enhance the advantages that we have gained in this
study. Another limitation of this study is that the proposed
framework cannot explain the hidden patterns learned by
DNNs because of the black-box property of deep learning.
However, the field of explainable artificial intelligence is
being actively studied for visualizing these hidden patterns
in nowadays [52]. For the future work, it will be possi-
ble to specify meaningful patterns to clinicians through
explainable artificial intelligence methodology.

Conclusion
As validated in the experiments, the proposed framework
will contribute to a cost-effective and precise diagnosing
of dementia. This effectiveness comes from the introduc-
tion of two-stage classification strategy for course-to-fine
screening to save the cost. In particular, the improvement
of accuracy mainly relies on the elaborate design of a
deep learning network using the most recent techniques
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to fit the best architecture in view of various aspects.
In addition to the architecture design of classifier, the
missing data imputation, selection of input variables take
an important role for the robustness, preciseness, and
cost-effectiveness of our framework. The proposed frame-
work could be expanded to a general system for early
detection of dementia.
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