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Does being physically active prevent future
disability in older people? Attenuated
effects when taking time-dependent
confounders into account
Stefan H. Kreisel1,2* , Christian Blahak2, Hansjörg Bäzner3 and Michael G. Hennerici2

Abstract

Background: Causal experimental evidence that physical activity prevents disability in older people is sparse. Being
physically active has nonetheless been shown to be associated with disability-free survival in observational studies.
Observational studies are, however, prone to bias introduced by time-dependent confounding. Time-dependent
confounding occurs when an exposure (e.g. being physically active at some time-point) potentially affects the future
status of a confounder (such as depression sometime later), and both variables have an effect on latter outcome (i.e.
disability). “Conventional” analysis with e.g. Cox-regression is the mainstay when analyzing longitudinal observational
studies. Unfortunately, it does not provide unbiased estimates in the presence of time-dependent confounding.
Marginal structural models (MSM) – a relatively new class of causal models – have the potential to adequately account
for time-dependent confounding.
Here we analyze the effect of older people being physically active on disability, in a large long-term observational
study. We address time-dependent confounding by using marginal structural models and provide a non-technical
practical demonstration of how to implement this type of modeling.

Methods: Data is from 639 elderly individuals ascertained in the European multi-center Leukoaraiosis and Disability study
(LADIS), followed-up yearly over a period of three years.
We estimated the effect of self-reported physical activity on the probability to transit to instrumental disability in the
presence of a large set of potential confounders.
We compare the results of “conventional” modeling approaches to those estimated using marginal structural models,
highlighting discrepancies.

Results: A “conventional” Cox-regression-like adjustment for salient baseline confounders signals a significant risk
reduction under physical activity for later instrumental disability (OR 0.62, 95% CI 0.44–0.90). However, given
MSM estimation, the effect is attenuated towards null (OR 1.00, 95% CI 0.57–1.76).
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Conclusions: Contrary to most reports, we did not find that physical activity in older people prevents future
instrumental disability, when taking time-dependent confounding into account. This result may be due to the
characteristics our particular study population. It is, however, also conceivable that previous evidence neglected the effect
of this type of bias.
We suggest that analysts of longitudinal observational studies consider marginal structural models as a further
modeling approach.

Keywords: Physical activity, Marginal structural models, Causal inference, Age-related white matter lesions,
Disability, Longitudinal observational studies

Background
Physical inactivity has been attributed to an increased
burden of disease [1]. Conversely, subjects engaging even
in small, leisure amounts of physical activity show re-
duced morbidity attributed to a wide variety of condi-
tions including cancer or diabetes in comparison to
those remaining inactive [2]. This is also seen for more
acute conditions such as ischemic stroke [3], but not
conclusively for pathophysiologically similar etiologies
such as ischemic cerebral white matter pathology [4],
highlighting heterogeneity of effects. These primary
preventive benefits are not limited to manifest disease, but
seem to be related in a more general sense to the
maintenance of well-being or sustainment of activities
of daily living.
Notwithstanding the fact that these beneficial results

of physical activity are replicable across different settings
and populations including older people, are supported
by well designed and at times very large prospective co-
hort studies – and are pathophysiologically plausible,
next to easily appealing to common sense – they are ob-
servations only and have not been conclusively derived
by experiment [5]. Therefore claims that physical activity
causally prevents disability must be interpreted with
caution. Unfortunately – for all practical purposes – ran-
domizing populations to be physically active over longer
periods of time and comparing them to others that were
instructed to remain inactive is infeasible.
As such, one is left with observation and perilous con-

founding. It is therefore important to conceptualize the
mechanics of long term observational studies such as
those investigating the effects of physical activity on dis-
ability in older people – being aware of potential bias.
From the outset, two aspects seem highly improbable:

That physical activity, as a form of treatment, remains at
one and the same level per individual throughout the
period of observation, and that confounders will be
stable across time (see Fig. 1) – therefore, there is in
fact, an individual varying history for both variables. For
example, subjects reporting physical activity and good
health at baseline may become depressed (a potential
confounder) at some point; they may then also be less

likely to continue being active (the time-varying state of
the confounder therefore influences the propensity of fu-
ture treatment). At a later time when mood has im-
proved, they may start exercising to keep spirits up and
with the intention to prevent disability.
In such a setting both treatment and confounding is

not stable over time, but rather time-varying, the effects
of both characteristics on outcome intermingle. At first
sight, adjusting for these associations (e.g. by including
these time-varying variables in a “conventional” Cox-
regression model) should disentangle specific effects.
Regrettably, it has been shown that given time-varying
treatment in the presence of time-varying confounding
“conventional” adjustment introduces a form of selection
bias [6], distorting estimates – see Sterne et al. [7] or
Gerhard et al. [8] for practical examples of how severe
this can be.
Fortunately, there is a relatively new class of statistical

models that allow for this type of estimation called mar-
ginal structural models (MSMs) – which are now used
more often in applied research with data derived from
observation. The question if physical activity in older
people prevents downstream disability has previously
not been analyzed taking time-varying confounding into
account. Here we do so with data from the European
multi-center Leukoaraiosis and Disability study (LADIS),
which included 639 elderly individuals, with planned
yearly follow-ups for at least three years after baseline
cerebral magnetic resonance imaging (MRI), surveyed
on a large set of clinical parameters, most of which have
the potential to act as time-varying confounders [9, 10].
We also look at if cerebral white matter pathology modi-
fies the effects. Moreover, we provide a non-technical
practical demonstration of how to implement this type
of modeling using standard statistical software in the
Supporting information (which are found in the Add-
itional file 1), discussing benefits and caveats.
MSMs are models that estimate the unconditional

(meaning not depending on covariates; also called “mar-
ginal”) mean counterfactual outcomes (also called “struc-
tural”) – given certain prerequisites – and can be used
for causal inference.
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Recall: Given experiment, groups randomized to one
or another treatment are unconditionally exchangeable,
meaning that the characteristics of individuals in one
treatment group are (theoretically) identical to those of
the other. This is one essential precondition for caus-
ation: Although it is impossible (and therefore counter to
fact) to observe an alternative outcome on an individual
level even when there is randomization, had that par-
ticular individual received any treatment other than
the actual treatment, exchangeability is viable on the
group level.
Marginal structural models emulate exchangeability in

observational studies, given (the, however, unrealistic
assumption) that one has unbiased information on all
confounders. This becomes possible by weighting the pa-
rameters of an outcome model (e.g. a “conventional”
Cox-regression model) by the inverse conditional prob-
ability of an individual having received his or her own
treatment (or treatment history), given the individual
levels of his or her set of confounders (or confounder
history). Hernán and Robins present a well readable
introduction to why this works [11]; we also refer to the
Supporting information of this manuscript. (The esti-
mated weight is called the “inverse probability weight”
and is abbreviated as “IPW”; these are similar to albeit
not interchangeable with propensity scores.)
By auspicious coincidence (which in actual fact it is

not), MSMs can deal with bias introduced by these
time-dependent associations (in short: time-dependent
confounding). The IPW is a weight that incorporates an
individual’s treatment history, given his or her con-
founder history. (For the rest of the paper “treatment”
(being actively exposed) will be seen as being inter-
changeable with “exposure” (being passively exposed, as
would be the case for self-reported physical activity).)

MSMs therefore provide a way to analyze longitu-
dinal observational studies that include repeated mea-
surements of treatment and confounding variables,
potentially emulating randomized trials. Given that
certain prerequisites are fulfilled (some of these being
difficult, if not impossible to surmount – see the
“Discussion” section), estimates can be interpreted as
expressing causal effects.

Methods
See Pantoni et al. for more details on recruitment
and other details of the European multi-center LADIS
study protocol [9]. LADIS was planned to test the
association of risk factors, foremost those related to
cerebral imaging related pathology, with possible
downstream transition to instrumental disability. Written
informed consent was required from the participant
or, if not possible, by his/her legal guardian. Ethical
approval for the LADIS study was given by all local
ethics committees.
Importantly, older people (65 to 84 years of age) were

recruited only if they were free of instrumental disability
at baseline and cerebral imaging using MRI showed at
least some degree of age-related white matter change
(ARWMC). 639 subjects were seen in person at one
of 11 recruitment sites on a yearly basis thereafter
(telephone interviews were performed if this was not
possible), resulting in a maximum of three contacts
post-baseline.
Note that LADIS is not a “true” population based

study, but rather a longitudinal cohort comprised mainly
of subjects that received initial cerebral imaging as part
of work-up for numerous complaints (e.G. minor neuro-
logical or psychiatric complaints in the domains

Fig. 1 Time-dependent treatment and confounding: How does it come about? This schematic causal diagram illustrates the treatment with “physical
activity” on the outcome status of “functional ability” in a hypothetical longitudinal study, which includes follow-up measurements of both
time-varying status of treatment and confounders. For details in respect to the figure, see the heading “Time-dependent treatment and
confounding: How does it come about?” in the “Methods” section
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cognition or mood, not limiting instrumental function-
ing). Subjects will therefore most likely not be represen-
tative of a community dwelling population.

Treatment, outcome, confounders
The LADIS protocol defined physical activity as being
“present” if an individual self-reported at least 30 min of
physical activity on at least three days of a given week
[12]. Note following important constraints. 1.) The sta-
tus of physical activity was enquired in respect to the
time period from a given interview to the previous one.
As such, it was intended to be an average measure, usu-
ally covering a period of one year. This introduces recall
bias, measurement error and inconsistency in the defin-
ition of “physical activity”. As pointed out above,
although “physical activity” is a passive exposure, we in-
terpret it for the purposes of this study as being analo-
gous to a form of treatment. (When “physical activity” is
put in quotation marks it implies this study-specific
treatment in contrast to physical activity as such.) 2.)
There was no external validation of the measure. This
introduces measurement error.
Informants rated the subjects’ instrumental activities

of daily living abilities at baseline and on each follow-up
on an eight item scale [13]. The outcome “transition to
instrumental disability” was reached if a subject scored
more than “no impairment” on at least two of eight
items. Informants were asked to approximate the time-
point of change. Again, both recall bias and measure-
ment error are potentially introduced.
A confounder is considered to be a variable that is a

common cause for both treatment and outcome.
Whereas this definition may be verifiable in a simple
non-time-varying setting with only a limited number of
variables, it becomes difficult to empirically select salient
confounding factors from a broad range of information
in time-varying scenarios: A variable may confound at
one time-point and not at another, or a variable may be-
come a confounder only in concert with other selected
variables. Referencing Hernán et al. [14], expert know-
ledge may need to influence the decision if or if not a
variable is indeed defined as a confounder. Table 1
shows those variables that we considered a priori to be
confounders [10, 15] – selected from over 50 covariates
available in the original LADIS study database.

Time-dependent treatment and confounding: How does it
come about?
Fig. 1 introduces the reader to the mechanics of time-
varying treatment in the presence of time-varying
confounding. This is illustrated as a schematic causal
diagram – details of which are explained below – of the
expected effect of treatment with “physical activity” on
the status of “functional ability” (i.e. the outcome would

be disability) in a hypothetical longitudinal study (but
closely analogous to our study), which includes follow-
ups allowing measurement of the status of treatment
and confounders (such as the history of depression).
Unfortunately, in this particular example, the study

plan forgot to include a further confounder, namely the
history of cancer – and as such, it remained
unmeasured.
The diagram implies that for this specific a subcohort

of the population, treatment with “physical activity” was
present (green fillings) at baseline and the first follow-
up, but subjects remained physically inactive on the
second and third follow-ups (red fillings). Outcome
was measured at the third follow-up. “Depression”
was absent (green fillings) at baseline and time-point
one; “depression” was present at the subsequent
follow-ups (red fillings).
All solid arrows highlight potential associations (and

their direction), including lagged effects (higher order
lags are not shown; also, the unmeasured confounder
“cancer” is measured throughout, but only shown on the
last follow-up).
Take special note of the boxes connected via the blue

arrows to the right. This constellation implies that “de-
pression” (dashed box at follow-up 3) acts as a con-
founder on the causal pathway of the effect of treatment
with “physical activity” on outcome; treatment and out-
come both have a common cause, namely “depression”
(arrows point from “depression” to the treatment and
outcome). In a non-time-varying setting, adjusting via
conventional methods for (i.e. conditioning on) the con-
founder “depression” would result in an unconfounded
(albeit conditional) estimate of the effect of interest.
Unfortunately, in a time-varying setting bias may in-

stead be introduced by adjusting for “depression” (again
– dashed box at time-point “follow-up 3”) via following
mechanisms:
Firstly, the treatment “physical activity” at follow-up 2

is associated with the confounder “depression” at follow-
up 3 – e.g. being previously “physically active” may pre-
vent present “depression”. Also, present “depression” will
influence the probability of developing future disability.
If one expects that most of the effect of “physical activ-
ity” on outcome is mediated through the presence or
absence of “depression” (this pathway is highlighted by
the dotted green line with the label ①) – “depression”
therefore not only being a confounder, but also acting as
an intermediate variable – adjusting for “depression”
would block this pathway, introducing bias.
Secondly, assume for a moment that in true fact there

is no direct causal effect of physical activity at follow-up
2 on outcome (by ignoring the arrows between “physical
activity” at follow-ups 2 and 3, and from there to the
outcome). But, “physical activity” at follow-up 2 affects
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the status of the variable “depression” at follow-up 3 as
does the unmeasured confounder “cancer” (latter con-
nection highlighted by the dotted green arrow with the
label ②). In other words, they share a common effect.
Also, the unmeasured confounder “cancer” is associated
with the outcome (dotted green arrow with the label ➋).
By adjusting for the confounder “depression” via conven-
tional methods, one is in fact inducing an artificial asso-
ciation between physical activity at follow-up 2 and
outcome, where in reality there is none. This equates
to a selection bias of the variable “physical activity”
(at follow-up 2; see Hernán et al. [6] for a thorough
explanation and Cole et al. [16] for an easily under-
standable example).

Marginal structural models and statistics
Time-dependent confounding (and time-varying treat-
ment) can be dealt with using marginal structural
models (MSM). We refer the reader to the Supporting
information (these are found in the Additional file 1) for
a practical introduction on how marginal structural
models can be estimated generically, including further
information on caveats. A summary of estimation steps
used in this specific study is presented below. Informa-
tion on each of these steps is cross-referenced in the
Supporting information under the heading “Marginal
structural models and statistics: Detailed methods”.
For standard authoritative publications on MSMs see

Robins and colleagues [17, 18]. See Fig. 1 and the figure
in the Supporting information for schematics of the
underlying problem MSMs solve.
In essence estimation is a two-step process, requiring

first the calculation of an individual and time-point spe-
cific weight (the IPW); this is the treatment model.
Secondly, one then performs the analysis of treatment
on outcome, weighted by the IPW – this it the outcome
model. Here we estimate a “marginal structural model
for survival analysis” using “pooled logistic regression”
weighted by the IPW, given a dichotomous treatment
(see the Supporting information for other model
specifications).
In the study presented here, variables included in the

estimation of the IPW (i.e. the treatment model) were
those that were considered to be potential confounders
(i.e. associated with both treatment and outcome) or
were associated with outcome only (which may reduce
bias further – see the Supporting information why this is
so) – if the univariate regression model was significant
to p < 0.1; for sake of simplicity, latter variables are also
subsumed under the term “potential confounders” (see
Table 1’s last column marking these variables). These in-
cluded both static (e.g. “level of education” or “white
matter pathology” at baseline) and time-varying variables
(e.g. “history of falls”). We also included baseline values

and lags (i.e. data of the previous follow-up time-point)
of time-varying variables (potential confounders and the
treatment variable). Moreover, the time variable as quar-
ters of a year from baseline and a spline function of the
time variable were entered as linear terms. The treatment
“physical activity” was regressed on these variables using
logistic regression, followed by the prediction of “ob-
served” treatment. The individual-specific “cumulative
propensity” was calculated thereafter for each observed
time-point. This is the denominator of the weight. The
numerator was calculated analogously, however, it included
static variables, the baseline variables for time-varying vari-
ables and the treatment history only (i.e. omitting follow-up
data for the potentially confounding variables and their
lags); and the time variable and its spline. The (row-wise)
quotient of numerators and denominators is then the so-
called “stabilized” (inverse) treatment weight.
Multiplying this weight by a further stabilized “censor-

ing” weight leads to the stabilized IPW. We truncated
the stabilized weight at its 1st and 99th percentiles.
The outcome model is a logistic regression model

where the outcome “transition to disability” is regressed
on the treatment “physical activity”, and the time vari-
able and its spline, weighted by the IPW. Although a
MSM is theoretically an unconditional model, further
predictors had to be added to the estimation due to the
way the IPW was calculated. These were those variables
used in the estimation of the numerator (excluding
treatment history).
To demonstrate how different adjustment strategies

for potential confounders affect estimation of disability
free survival given physical activity, the results of the
marginal structural model was compared to an un-
adjusted pooled logistic regression model, a baseline ad-
justed pooled logistic regression model and a pooled
logistic regression model that includes time-varying
values for treatment and confounders. Note that pooled
logistic regression was used instead of “conventional”
Cox-regression models to analyze survival given tech-
nical constraints in the way weights can be handled in
most statistical software packages. Pooled logistic regres-
sion approximates proportional hazard models.

Results
Table 1 highlights the characteristics of those variables
deemed to be confounders of the putative causal associ-
ation between “physical activity” and transition to dis-
ability. It shows that not all of these variables are in fact
confounders. For example, smoking is neither associated
with self-reported “physically activity” nor is it associated
with a transition to disability. Other variables, such as a
history of osteoarthritis, do in fact significantly hamper
the ability to be “physically active”, but are unassociated
with outcome.
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Most variables are non-constant over time. For ex-
ample, marital status changes in 6.6% of the cohort dur-
ing the course of the study; the status self-reported gait
disturbance is highly dynamic, changing in 30.8% of the
individuals at least once on repeated questioning.
Self-reported “physical activity” is non-constant in
27.7% of the cohort (46.2% report constant activity,
26.2% constant inactivity). 32.9% of the cohort trans-
ited to instrumental disability, on average 1¾ years
after baseline (median 1½ years, IQR 1–2 ¼ years).
Fig. 2 summarizes the effect of “physical activity” on

the transition to instrumental disability given different
modeling approaches.
If potential confounders are simply ignored, the treat-

ment “physical activity” indicates a substantial protective
effect on outcome: An average individual that had re-
ported being physically active at least 30 min on at least
three days a week would have approximately 50% less
odds of transiting to instrumental disability over the fol-
lowing quarter of a year (odds ratio 0.47, 95% CI 0.35–
0.62, p < 0.001).
Clearly, this is a limited interpretation as it would

ignore the effect of variables affecting treatment and
outcome. Adjusting for these variables at baseline, re-
duces the predicted protective effect that “physical activ-
ity” might have on preventing disability (odds ratio 0.62,
95% CI 0.44–0.90, p = 0.011).
If one also considers the time-varying data structure

using a “conventional” Cox-regression-like adjustment
(but not addressing time-varying confounding), the asso-
ciation is attenuated further: Though the point estimate

still indicates a protective effect, variability increases,
rendering an overall insignificant contribution (odds ra-
tio 0.70, 95%CI 0.47–1.05, p = 0.086).
Accounting for selection-bias induced by the time-

varying effects of treatment and confounding using a
marginal structural model approach – theoretically
modeling a population based effect of physical activity
on outcome in analogy to the mechanics of a
randomized controlled trial – the effect of physical
activity becomes equivocal (odds ratio 1.00, 95% CI
0.57–1.76, p = 1.0).
Of further interest was the question if the baseline

variable “white matter pathology” (i.e. ARWMC) modi-
fied the effect. In other words: Do individuals with a spe-
cific lesion load benefit more from “physical activity”
than others? All models’ point-estimates other than the
MSM indicate that patients with either mild or severe
degrees of ARWMC fare better given “physical activity”
in comparison to those with moderate lesion load. This
pattern is reversed in the marginal structural model
estimation. Here patients with moderate white matter
pathology seem to profit most from persistent “phys-
ical activity”, albeit given large variability in the esti-
mate. None of these comparisons, however, reach
statistical significance.

Discussion
Firstly, it appeals to common sense that being physically
active is beneficial on one’s future health.
However, it is, secondly, equally plausible that there is

an association between being presently able to perform

Fig. 2 The effect of “physical activity” on the risk of transition to disability. The unadjusted model and models marked “conventional adjustment”
estimate the effect using a pooled logistic regression model – which is comparable to a Cox-regression analysis – with different degrees of adjustment
as indicated. Estimates are therefore not the customary hazard ratios, but are instead expressed as odds ratios. The labels “Mild”, “Moderate” and “Severe”
refer to estimates given different degrees of age-related white matter lesions
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physical activities and the status of presently being
healthy (and the contrary).
Moreover, thirdly, numerous other risk factors will

likely influence the risk of future disability.
The results of this study give some support for the

second and third hypotheses: many factors influence an
individual’s propensity to report being physically active –
such as having chronic pain, being afflicted by osteoarth-
ritis or peripheral vascular disease. A major depressive
episode, incident stroke and – importantly – age itself
are all risk factors promoting a disabling outcome.
Numerous variables influence both the likelihood of
treatment and outcome (i.e. representing confounding),
having cognitive impairment, for example.
At first sight there also is support for the first notion

above: Ignoring other possible influences, contemporary
“physical activity” very significantly prevents future in-
strumental disability (the odds of experiencing disability
is 50% less for the next quarter of a year when being
“physically active”). This is in line with the results sum-
marized across nine studies in a recent meta-analysis
[19]. The authors found a pooled odds ratio of 0.51
given previous “medium” or “high” levels of physical ac-
tivity (the self-reported level of positive physical activity
in the present study theoretically lies somewhere be-
tween “medium” and “high”). This effect was estimated
given various degrees of adjustment in individual studies
for demographic variables, lifestyle factors, functional
limitations and health status. Note, however, that the
summary estimate included only baseline adjusted data,
as is common in many prospective cohort studies: An
individual is seen thoroughly once at study entry,
acquiring the full breadth of information; outcome
(but not further variables) is then ascertained through
repeated screening thereafter. Therefore, time-varying
treatment and confounding will not have been ad-
equately acknowledged.
There are some notable exceptions in the literature.

For example, Liao and co-authors analyzed the effect of
healthy behaviors including regular exercise in four
waves over a ten year period [20]. When adjusting for
time-varying health status (i.e. confounding; but ignoring
time-varying treatment status) using a typical Cox-
regression modeling approach, exercise reduced the risk
of functional disability by 34% – resembling the estimate
from our third model.
Keysor pointed out that the majority of observational

(non-experimental) prospective cohorts highlight a
beneficial effect of physical activity on downstream dis-
ability; experimental evidence, however, is far from con-
clusive, with most studies not showing that physical
activity is causally preventive [5]. This notwithstanding,
randomized trials in older populations testing the effect
of less comprehensive therapies such as muscle

strengthening or balance training on change in ability in
simple motor activities in the short term do prove to be
effective [21]. These results, however, do not readily
transport to more complex measures of disability [22]
and may confer benefit only in certain, already disabled
populations. Most authors, moreover, underline the scar-
city of available studies, perhaps reflecting the difficulty
in carrying out complex experiments with long periods
of follow-up [23], and reverberate difficulties in compar-
ability with heterogeneous definitions of interventions
and outcomes [24].
Theoretically, MSMs provide unconditional population

causal effect estimates from observational studies –
these can therefore potentially be interpreted analo-
gously to results from randomized controlled trials.
Marginal structural models take into account that
treatment is dependent on prior treatment and on
prior confounder status, both being potentially associ-
ated with outcome.
Doing so attenuates our previously estimated prevent-

ive effects using “conventional” modeling towards null:
Taking into account that an individual’s time-varying
health status is associated with future treatment (second
hypothesis above), and the health status also predicts
outcome (third hypothesis), may explain this non-
beneficial (but also non-detrimental) effect (refuting the
first hypothesis above). Self-reported “physical activity”
as such is not sufficient to prevent transition to instru-
mental disability (in the data analyzed here).

Constraints of marginal structural models
Albeit the useful characteristics of MSMs allowing some
approximation of treatment effects in the observational
setting otherwise not accessible in experiments, we can-
not argue conclusively against a beneficial causal effect
of physical activity on the advent of instrumental disabil-
ity. The results from marginal structural model analysis
must be interpreted with caution. There are several rea-
sons for this. Next to the lack of external validity – ex-
trapolation of the results is inherently limited to
populations “like” the one ascertained in the LADIS
study – there are numerous analytical constraints (next
to numerous forms of bias as pointed out in the
“Methods” section and in the Supporting information).
Firstly, MSMs are only valid if both the treatment and

the outcome models are specified correctly (Note that
this is an equal pre-condition for “conventional” regres-
sion models.). There is no way “proving” that we have
succeeded here. Correct model specification would
mean, for example, that we are certain about how the
variables included “relate” to each other. For example,
though neither alcohol nor smoking are associated sig-
nificantly with either the propensity for “physical ac-
tivity” or future disability, their interaction may well
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be; we, however, did not test all interactions. Or: We
don’t know if treatment conveys a dichotomous yes/
no effect (which it surely will not). However, we are
modeling one here. Also, erroneously including poten-
tially non-confounding variables will re-introduce bias
and reduce precision [25].
Secondly, it must be guaranteed that at each level of a

confounder there is data available for exposed and unex-
posed individuals. This prerequisite, also called “positiv-
ity”, is nearly impossible to fulfill in high-dimensional
data, moreover given many continuous variables (see the
Supporting information for a way to colloquially check
validity).
Thirdly – as a prerequisite for correct model specifica-

tion – all potential confounders must have been mea-
sured and without error at that; latter condition also
applies for both the treatment and outcome variables
(e.g. we could not validly quantify self-reported “physical
activity”). It is quite probable, if not certain, that we have
missed informative data and are left with residual con-
founding. Other factors potentially associated with treat-
ment and outcome – such as infections, cancer or other
indicators of health status, and a more precise measure-
ment of psychosocial determinants were unavailable [26].
Fourthly, the confidence intervals estimated using the

MSMs are wider than under conventional adjustment
and may indicate that although one is now adequately
accounting for bias, the estimation of the IPW remains
inefficient. In short: Although the sample size is quite
large, it may still be too small to detect real effects given
this modeling approach.
Finally, though less relevant (but not irrelevant; see

[27]) for the aspect of estimating unbiased and uncondi-
tional effects: For marginal structural models to be valid
in respect to providing truly causal estimates, the treat-
ment – more specifically the causal contrast under
investigation – must be “consistent”. Consider the fol-
lowing: Our causal contrast was self-reported “physical
activity” above a certain cut-off (see the “Methods” sec-
tion) versus not being so. “Physical activity” could mean
that an individual was active playing golf three times a
week, walking vigorously daily or doing 35 min of
upper-body exercise on Fridays, Saturdays and Sundays.
Given this heterogeneity, we are unable to define a con-
trast narrow enough to specify a potential causal mech-
anism [28]. Would one plan an experiment with the
randomized intervention being: “Indiscriminately per-
form physical activity on at least three days a week for at
least 30 minutes or more.”? Most likely one would ex-
pect a much more specific treatment plan.

Consistency of treatment and causal interpretation
There is another aspect relevant for a valid causal inter-
pretation. LADIS – the study from which the data was

drawn – was designed to investigate risk factors associ-
ated with the development of ARWMC and clinical
features of individuals in respect to different degrees of
pathology. It might seem tempting to investigate the po-
tential “causal effect” of white matter pathology (i.e. the
exposure or, synonymously, treatment) on the transition
to disability (i.e. the outcome) – knowing that there is a
well documented “association” [10] – using MSMs, given
their desirable properties. For example, one might want
to construct the “causal contrast” “mild lesion load” ver-
sus “severe lesion load”. Though analytical feasible, such
an attempt will not lead to plausible conclusions. The
reason is two-fold. Firstly, as in the example above: We
may now have a consistent definition of the causal con-
trast (i.e. we know the exact “amount” of pathology), but
we are completely agnostic as to the mechanism that
causes this pathology – and in turn may be at least par-
tially (also) causing disability. Is it diabetes in one indi-
vidual? Is it hypertension in another? Is it genetics? So if
we contrast “mild” with “severe” pathology, we do not
know if it is a contrast of white pathology due to dia-
betes or due to hypertension? The causal pathway to
disability may differ depending on the underlying patho-
physiology. Secondly – perhaps conceptually more im-
portant – contrary to the “physical activity” intervention,
what are we to manipulate? There is no way to “treat”
with “mild” versus “severe” white matter pathology.
Causal inference generally becomes futile without the
possibility of manipulation [29].
However, MSMs do allow us to study the potential asso-

ciation of non-time-varying static variables (e.g. baseline
variables) on treatment and their effect on outcome. For
example, our data suggests that, contrary to estimates ig-
noring time-varying bias using “conventional” regression,
it may in fact be those individuals with “moderate”
ARWMC that profit more from “physical activity” in con-
trast to those with “mild” or “severe” lesion load. Though
perhaps pathophysiologically plausible – those with “mod-
erate” pathology may still have more “brain reserve” than
those “severely” affected (latter may perhaps also be more
prone to injuries related to physical activity), those with
“mild” pathology simply may not benefit from interven-
tion – we have no evidence to refute the possibility that
this pattern is nothing but a chance finding.

Conclusion
Concluding, in situations where randomized controlled
trials are infeasible as in the question at hand here, ana-
lyzing longitudinal observational data with repeated
measurements of treatment and confounders, given
otherwise uncontrollable bias introduced by time-
varying associations, marginal structural models allow
for a relatively easily implementable causal analysis – if
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pre-requisites are considered, their intricacies and po-
tential fallacies understood.

Additional file

Additional file 1: Supporting information. The Supporting information
provides a non-technical introduction on how marginal structural models
can be estimated generically. We provide a practical demonstration of
how to implement this type of modeling using standard statistical software,
discussing benefits and caveats. We include an additional figure that
highlights the underpinnings of time-varying treatment, time-varying
confounding and the inverse probability of treatment weight. The estimation
steps presented in the main manuscript are cross-referenced in the
Supporting information. (DOC 1488 kb)
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