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Increased telomere length and proliferative
potential in peripheral blood mononuclear cells
of adults of different ages stimulated with
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Abstract

Background: Recently, a direct correlation with telomere length, proliferative potential and telomerase activity has
been found in the process of aging in peripheral blood cells. The objective of the study was to evaluate telomere
length and proliferative potential in peripheral blood mononuclear cells (PBMCs) after stimulation with
Concanavalin A (ConA) of young adults compared with older adults.

Methods: Blood samples were obtained from 20 healthy young males (20–25 years old) (group Y) and 20 males
(60–65 years old) (group O). We compared PBMC proliferation before and after stimulation with ConA. DNA was
isolated from cells separated before and after culture with ConA for telomeric measurement by real-time
polymerase chain reaction.

Results: In vitro stimulation of PBMCs from young subjects induced an increase of telomere length as well as a
higher replicative capacity of cell proliferation. Samples from older adults showed higher loss of telomeric DNA
(p = 0.03) and higher levels of senescent (≤6.2 kb) telomeric DNA (p = 0.02) and displayed a marked decrease of
proliferation capacity. Viability cell counts and CFSE tracking in 72-h-old cell cultures indicated that group O PBMCs
(CD8+ and CD4+ T cells) underwent fewer mitotic cycles and had shorter telomeres than group Y (p = 0.04).

Conclusions: Our findings confirm that telomere length in older-age adults is shorter than in younger subjects.
After stimulation with ConA, cells are not restored to the previous telomere length and undergo replicative
senescence. This is in sharp contrast to the response observed in young adults after ConA stimulation where cells
increase in telomere length and replicative capacity. The mechanisms involved in this phenomenon are not yet
clear and merit further investigation.
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Background
Aging is associated with deterioration of physical and
mental functions as well as increased morbidity and
mortality. Its mechanism is not fully understood but a
number of factors are involved such as hormonal imbal-
ances, oxidative stress, metabolic changes, etc. At the
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cellular level, evidence suggest that aging is associated
with lower immune reactivity and decreased numbers
of circulating CD4+ T and B lymphocyte subsets [1].
Recently, a direct correlation with telomere length and
telomerase activity has been found in the process of
aging.
Telomeres are structures located at the extreme ends of

chromosomes and are considered indicators of biological
age. Early studies showed the essential role of telomeres
in the protection of chromosome integrity [2]. These
nucleoprotein caps are maintained by the enzyme tel-
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omerase [3,4]. The importance of adequate telomerase
activity and maintenance of telomere length for replicative
potential and aging was initially inferred from studies in
primary human fibroblast [5,6]. In culture assays, division
of fibroblasts resulted in progressive telomere attrition,
culminating in a state of proliferative arrest or cellular
senescence after a finite number of cell divisions, a
phenomenon known as the Hayflick limit [7]. Excessive
telomere shortening prior to the expression of telomerase
can lead to chromosome fusion, which has been proposed
as a mechanism for chromosome instability [8]. Maser
et al. reported the contrasting contributions of telomeres
in the initiation and suppression of cancer and reviewed
the evidence that radical chromosomal aberrations typify
cancer genomes [9].
On the other hand, the stimulation of expression of

TERT (the catalytic subunit of telomerase) in cultured
human fibroblast stabilized telomere length and endowed
the cells with unlimited replicative potential without
creating malignant properties [10]. Thus, cellular aging
triggered by critical telomere shortening can be prevented
or delayed by telomerase reactivation [11]. Induction of
telomerase activity that allows indefinite cell proliferation
has been documented in different human cells [12].
These crucial in vitro studies and others using telomerase
knockout mice have been used to investigate telomere
dynamics in the processes of aging and in several de-
generative diseases in humans. Telomere shortening
depends on cell division [13]. Therefore, telomere length
not only provides information as an indicator of the
replicative history of cells but may also suggest the rep-
licative potential remaining in each cell [14].
Mondello et al. analyzed the length of the terminal

restriction fragments (TRF) in fibroblast and blood cells
from four healthy subjects >100 years old as well as 11
individuals of different ages. No correlation between
mean TRF length and donor age was found. However,
as expected, telomere shortening was detected during
in vitro propagation of fibroblasts from aged subjects,
suggesting that telomeres can be far from reaching a
critical length [15].
Allsopp et al. examined the rate of telomere shortening

in quiescent cells in vivo and measured TRF length in
brain tissue from adult donors 32–75 years of age. No
significant association was observed between TRF length
and donor age (p = 0.087) in contrast to telomere length
shortening that occurs during in vivo aging of mitotically
active cells (p = 0.0001). These observations show that
telomere shortening is largely, if not entirely, dependent
on cell division and support the end replication problem as
a mechanism of this process. Therefore, telomere length
can be used as a biomarker for replicative capacity [16].
The purpose of our study was to evaluate telomere

length and proliferative potential of peripheral blood
mononuclear cells (PBMCs) of young adults compared
with older adults. We compared PBMC proliferation
before and after stimulation with ConA.

Methods
Blood samples were obtained from 20 healthy males
(20–25 years old) (group Y/young), and 20 males (60–65
years old) (group O/older). All persons included in this
study were nonsmokers with no history of alcohol abuse
or drug consumption. This protocol was approved by the
local Bioethics Committee of the Unidad Médica de Alta
Especialidad (UMAE) No. 1 Bajío, Instituto Mexicano del
Seguro Social (IMSS), León, Guanajuato, México. Written
informed consent was obtained from each volunteer.

PBMC isolation and culture
PBMCs were isolated by Ficoll-Hypaque density gradient
centrifugation (Sigma-Aldrich, St. Louis, MO). PBMCs
were labeled with cell tracker dye CFSE (0.5 μM; Molecu-
lar Probes, Eugene, OR) to monitor proliferation. Briefly,
PBMCs were suspended in PBS at a concentration of 1 ×
106/ml, and an equal volume of 1 μM CFSE in PBS was
added. PBMCs were incubated in the dark at room
temperature for 10 min, centrifuged, and the supernatant
discarded. Cells were resuspended in 5 ml of RPMI media
and incubated for 30 min at 37°C with 5% CO2. CFSE-
labeled PBMCs were then cultured with or without 2.5
μg/mL of concanavalin A (ConA, Sigma Aldrich) for
72 h at 37°C, 100% humidity and 5% CO2. After that,
the percentage of divided cells was determined by flow
cytometry analysis with a FACSCalibur™ flow cytometer
(Becton-Dickinson, San Jose, CA) by using the Cell Quest
software (Becton Dickinson).

Telomeric measurement
DNA was isolated from PBMCs before and after culture
with ConA through phenol–chloroform technique for
telomeric measurement. Telomeric length was measured
as previously described [17] by PCR amplification with
oligonucleotide primers designed to hybridize to the
TTAGGG and CCCTAA repeats. The final concentrations
of reagents in the PCR were 0.2 SYBR Green I (Molecular
Probes), 15 mM Tris–HCl, pH 8.0, 50 mM KCl, 2 mM
MgCl2, 0.2 mM each dNTP, 5 mM DTT, 1% DMSO
and 1.25 U AmpliTaq Gold DNA polymerase. The final
telomere primer concentrations were as follows: tel 1,
270 nM; tel 2, 900 nM. The final 36B4 (single copy gene)
primer concentrations were 36B4u, 300 nM; 36B4d, 500
nM. Primer sequences (5′→3′) were as follows: tel 1,
GGTTTTTGAGGGTGAGGGTGAGGGTGAGGGTGA
GGGT; tel 2,TCCCGACTATCCCTATCCCTATCCCTAT
CCCTATCCCTA; 36B4u, CAGCAAGTGGGAAGGTGT
AATCC; 36B4d,CCCATTCTATCATCAACGGGTACAA.
[15]. All PCRs were performed using LightCycler® (model
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1.5) by Roche thermocycler. The thermal cycling profile
for both amplicons began with 95°C incubation for 3 min
to activate the AmpliTaq Gold DNA polymerase. For telo-
mere PCR, 40 cycles of 95°C for 15 s, 54°C for 2 min, and
for 36B4 PCR, 40 cycles of 95°C for 15 s, 58°C for 1 min
were set. LightCycler® (model 1.5) by Roche thermocycler
was then used to generate the standard curve for each run
and to determine the dilution factors of standards corre-
sponding to the T and S amounts in each sample.

Statistical analysis
To determine between-group differences, we used Mann–
Whitney U test. All data are presented as mean ± SE;
p < 0.05 was accepted for statistical significance.

Results
Telomeric length in PBMCs before and after stimulation
with ConA
We measured telomeric length in PBMCs before and after
in vitro stimulation by RT-PCR technique. Unstimulated
cells from group O had shorter telomeres than cells from
group Y (p = 0.03). Consequently, cells from older adults
(group O) did not show any changes of telomeric DNA
(p = 0.17) and higher levels of senescent (≤6.3 kb) telomeric
DNA (p = 0.02) (Table 1).
Surprisingly, we found increased telomere length in

cells from Group Y after in vitro stimulation with ConA.
Whereas no changes in telomeric length were observed
in cells from group O with ConA stimulation (Table 1),
cells from group Y are capable of increasing telomere
length and, therefore, decreasing the percentage of crit-
ically short telomeres.
In both groups (young men and older men), the per-

centages of CD3+ as well as CD3- cells were similar.
However, in group O the CD4+ subset was significantly
higher than in group Y, whereas CD8+ population was
slightly higher in group Y (data not shown).

PBMC proliferation and replicative potential
The capacity of PBMC proliferation after in vitro stimu-
lation with ConA was significantly different between
groups Y and O. In most cases, more cells from group Y
Table 1 Telomeric length before and after stimulation in
both groups

Mean telomere length (kb)

Before stimulation After stimulation p

Group Y 12.416 ± 7.67 13.034 ± 20.31 p = 0.04

Group O 6.382 ± 6.39 6.295 ± 8.54 p = 0.17

p = 0.03 p = 0.02

Note: Significant difference was shown between groups (calculated with
Mann–Whitney U test).
Group Y, young adults; group O, older adults.
Data are presented as mean ± SE; p <0.05 was considered significant.
reached more divisions than those in group O (Table 1).
Therefore, CFSE-labeled cells from group O undergo
fewer cell divisions (Figure 1) and had shorter telomeres
than group Y (p=0.04) after 72 h of in vitro stimulation
(Table 1). Coincidentally, cells with a low proliferative
response to ConA stimulation (group O) were those with
shorter telomeres.

Discussion
Our findings clearly point to the difference in telomere
length and replicative response after ConA stimulation
between PBMCs of young subjects and older subjects.
Shortening of telomeres is the cause of replicative

senescence of mammalian cells in culture and may be a
cause of cellular aging in vivo [18]. It has been shown
that in some tissues cells suffer telomere shortening
during aging in humans [4,19-21].
It is important to note that telomere shortening in

aging subjects has been reported in human peripheral
blood leukocytes [22,23], in PBMCs [24], and in T cells
[25,26]. The significance of this phenomenon is unclear,
but it has been suggested that it is related to the dimin-
ished immunity that occurs in older age.
Yang et al. investigated the relationship between telo-

mere biology and replicative senescence by measuring
replicative capacity and telomere length as a function
of donor age in cells from adrenal tissue from donors
of different ages. They found an age-related decline in
total replicative capacity. These authors confirm the
relationship between telomere length, telomerase, and
replicative capacity in culture [27]. However, Allsop et al.
did not find any relation between TRF length and donor
age [5].
Blackburn concluded that telomere length does not act

as a mitotic clock and that the presence or absence of
telomerase is crucial in maintaining cellular reproductive
capacity. The author developed a dynamic two-state
model of telomeres in which there was a switch between
capped and uncapped states [28]. Enzymatically active
telomerase apparently has a protective effect on very
short telomeres that, in its absence, would have caused
a cessation in cell division [28,29]. Greider [30], a co-
discoverer with Blackburn of telomerase, concluded that
there is little or no evidence that the changes that cells in
culture undergo are the same as those that normal cells
undergo with age in vivo [31].
This concept assumed an iconic character with the

report that ectopic expression of telomerase by a vector
greatly extended the lifespan of human cells. That some-
thing similar might occur in vivo seemed consistent with
initial reports that most human somatic tissues lack tel-
omerase activity [31].
Loss of genome integrity and associated DNA damage

signaling and cellular checkpoint responses are well-
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Figure 1 CFSE proliferation histograms (group Y and group O). Lymphocyte proliferation with concanavalin A stimulation was significantly
different between groups. Number of reached divisions: 1) without divisions, 2) one division, 3) two divisions, and 4) three divisions. Significant
difference is shown between groups* (calculated with Mann–Whitney U test). All data are presented as mean ± SE; p<0.05 was
considered significant.
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established intrinsic instigators that drive tissue degener-
ation during aging [32]. Mounting evidence in humans
has also provided a strong association of limiting telo-
meres with increased risk of age-associated disease [33]
and with onset of tissue atrophy and organ system failure
in degenerative diseases. Controversially, Bestilny et al.
reported an inverse relationship between telomere length
and progression of immunosuppression, with HIV infec-
tion resulting in a 5-fold or greater acceleration of aging of
the circulating PBMC component of the immune system
[34]. Honda et al. also found that T cells showed an accel-
erated loss of telomeric DNA in patients with systemic
lupus erythematosus [35].
We report here that unstimulated PBMCs from group

O have shorter telomeres than group Y. Surprisingly, a
5-kb increase in telomeric length was found in PBMCs
from group Y after in vitro stimulation with ConA. A
previous study showed that restoration of telomerase
activity prevented the wide range of degenerative path-
ologies [36].
Son et al. [37] observed that the capacity for induced

telomerase expression in T and B cells is diminished
with age. The replicative capacity in young T cells is
considerably higher. This is influenced by the size of the
telomere because we were able to compare between
groups. The relationship between telomere length and
replicative capacity before and after ConA stimulation is
significantly different between groups. In most cases,
more PBMCs reached more divisions in group Y than in
group O. Jaskelioff et al. recently demonstrated that mul-
tiple aging phenotypes in a mouse model of accelerated
telomere loss can be reversed within 4 weeks of reactivat-
ing telomerase. The authors speculate that some tissue
stem/progenitor cells are retained in a quiescent and
intact state, yet they can be enlisted to resume normal
repopulating function upon elimination of genotoxic stress
of telomeres [12]. Cumulative evidence implicating telo-
mere damage as a driver of age-associated organ decline
and disease risk [10,38] and the dramatic reversal of sys-
temic degenerative phenotypes in adult mice observed
here support the development of regenerative strategies
designed to restore telomere integrity.

Conclusions
Our findings demonstrate that elongation of telomeres is
associated with a higher replicative capacity after stimula-
tion with ConA in young adults. We can only speculate
that this phenomenon may have been due to activation of
telomerase through series of signaling pathways triggered
by ConA. We are not aware that the mechanism of telo-
mere elongation as a consequence of replicative stimulation
has yet been studied. However, it may be a promising line
of research. It is clear that in cells from older subjects this
yet unknown mechanism is impaired.
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