Skip to main content

Advertisement

Table 1 Descriptive Statistics of Variables, R Aged 65 and Over, China

From: Falls and risk factors of falls for urban and rural community-dwelling older adults in China

VariableUrbanRural
Dependent Variable%S.D.%S.D.
When R fell in past 12 months**
 Yes15.0 17.0 
 No85.0 83.0 
Independent Variables
1) Personal Characteristics
Sex***
 Male49.2 54.9 
 Female50.8 45.1 
Age***
 65–7455.4 53.3 
 75–8437.9 38.8 
  ≥ 856.8 7.9 
If illiterate***
 Yes17.2 46.9 
 No82.8 53.1 
Household income per capita ***29,051.776,549.77780.320,877.1
If living alone ***
 Yes17.3 18.3 
 No82.7 81.7 
2) Health Status
 Vision***
  Good38.5 30.2 
  Fair28.7 29.3 
  Bad32.8 40.5 
Chronic Diseases
 Hypertension***
  Yes48.2 30.6 
  No51.8 69.4 
 Heart Disease***
  Yes33.4 15.7 
  No66.6 84.3 
 Arthritis
  Yes24.6 24.4 
  No75.4 75.6 
 Cervical and lumbar spondylosis***
  Yes18.4 14.3 
  No81.6 85.4 
 Cerebrovascular disease***
  Yes15.1 9.2 
  No84.9 90.8 
 Self-Rated Health***
  Very bad4.5 7.2 
  Bad16.4 25.0 
  Fair56.3 49.4 
  Good19.6 15.7 
  Very good3.3 2.8 
 Cognitive function score (mean)***1.01.41.21.6
 ADL disability damage score (mean)***6.82.17.02.1
 Depressive symptoms ***
  Yes17.3 34.5 
  No82.7 65.5 
3) Environmental Factors
 If tap water is available ***
  Yes98.8 65.3 
  No1.2 34.7 
 Apartment type***
  One-story apartment16.4 71.9 
  High rise building with elevator or on 1st floor23.7 14.6 
  High rise building without elevator59.9 13.5 
 If satisfied with living condition
  Yes86.0 86.1 
  No14.0 13.9 
4) Physical Activities
 Taichi***
  Yes6.2 0.5 
  No93.8 99.5 
 Muscle-toning exercises***
  Yes9.6 1.1 
  No90.4 98.9 
 Taking a walk***
  Yes77.8 62.3 
  No22.2 37.7 
5) Life Styles
 Whether smoked ***
  Yes31.2 42.7 
  No68.8 57.3 
 Whether drank***
  Yes34.6 41.8 
  No65.4 58.2 
 N84407953
  1. Source: 2010 wave of the Chinese Longitudinal Survey on Urban and Rural Elderly
  2. Note: R refers to the respondent. * p < 0.05; ** p < 0.01; *** p < 0.001 represent significance levels when conducting Chi-square or T-tests to check rural-urban sample differences