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Abstract

Background: Walking requires gait adjustments in order to walk safely in continually changing environments. Gait
adaptability is reduced in older adults, and (near) falls, fall-related hip fractures and fear of falling are common in
this population. Most falls occur due to inaccurate foot placement relative to environmental hazards, such as
obstacles. The C-Mill is an innovative, instrumented treadmill on which visual context (e.g., obstacles) is projected.
The C-Mill is well suited to train foot positioning relative to environmental properties while concurrently utilizing
the high-intensity practice benefits associated with conventional treadmill training. The present protocol was
designed to examine the efficacy of C-Mill gait adaptability treadmill training for improving walking ability and
reducing fall incidence and fear of falling relative to conventional treadmill training and usual care. We hypothesize
that C-Mill gait adaptability treadmill training and conventional treadmill training result in better walking ability than
usual care due to the enhanced training intensity, with superior effects for C-Mill gait adaptability treadmill training
on gait adaptability aspects of walking given the concurrent focus on practicing step adjustments.

Methods/design: The protocol describes a parallel group, single-blind, superiority randomized controlled trial with
pre-tests, post-tests, retention-tests and follow-up. Hundred-twenty-six older adults with a recent fall-related hip fracture
will be recruited from inpatient rehabilitation care and allocated to six weeks of C-Mill gait adaptability treadmill
training (high-intensity, adaptive stepping), conventional treadmill training (high-intensity, repetitive stepping) or usual
care physical therapy using block randomization, with allocation concealment by opaque sequentially numbered
envelopes. Only data collectors are blind to group allocation. Study parameters related to walking ability will be
assessed as primary outcome pre-training, post-training, after 4 weeks retention and 12 months follow-up. Secondary
study parameters are measures related to fall incidence, fear of falling and general health.

Discussion: The study will shed light on the relative importance of adaptive versus repetitive stepping and practice
intensity for effective intervention programs directed at improving walking ability and reducing fall risk and fear of
falling in older adults with a recent fall-related hip fracture, which may help reduce future fall-related health-care costs.

Trial registration: The Netherlands Trial Register (NTR3222).
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Background
Falls among older adults are a growing public health
problem, particularly in western society with its increas-
ingly aging population. Approximately one third of all
community-living people over 65 years fall each year
[1-5], and fall incidence rises even further with age [2-6].
Fall incidence is substantially higher in older adults res-
iding in nursing, rehabilitation and hospital care facil-
ities, especially after an injurious fall [6-9]. Falls may
lead to fractures, soft tissue injuries and even death
[6,10-12]. In The Netherlands, falls among older adults
yearly result in 83000 emergency room treatments,
43000 hospital admissions and 2165 deaths [13], which
entails an estimated yearly cost of 820M euro [13]. Fur-
thermore, falls are associated with reduced participation,
reduced functional ability and fear of falling [6,10,12].

Falls are thus common in older adults and their conse-
quences and costs are well documented. Falls in older
adults mostly occur during walking [9,11] and are caused
by a combination of intrinsic and extrinsic factors. Intrin-
sic factors associated with falling are generally age-related
and include reduced executive function, increased gait-
related attentional demands, decreased muscle strength,
impaired vision, and gait and balance impairments
[1,14-20]. Extrinsic risk factors for falling include poor
lighting conditions, inappropriate footwear and environ-
mental hazards such as obstacles, cluttered terrain, the
presence of pets and slippery surfaces [1,6,11]. These en-
vironmental hazards contribute to approximately half of
all falls [1,6,11,21,22]. Therefore, gait adaptability (i.e., the
ability to adjust gait to environmental hazards; [23]) evi-
dently seems an important factor to include in interven-
tion programs aimed at reducing falls in older adults.

Strikingly, however, intervention programs rarely incorp-
orate gait adaptability as an explicit target to reduce falls
and fall risk in older adults (see Weerdesteyn et al. [24] for
a notable exception), despite its self-evident importance.
Instead, fall-prevention programs have focused on other
factors, including vitamin D supplementation, medication
optimisation, education, multi-factorial interventions, en-
vironmental home safety interventions and exercise pro-
grams [5]. Although multi-factorial interventions appear
effective in reducing fall rate, beneficial effects for reducing
fall risk as well as fall rate in community dwelling older
adults are only established for exercise programs and envir-
onmental home safety interventions [5]. The removal of
environmental hazards in the house is thus an effective
form of fall prevention, which further adds to the import-
ance of environmental hazards as risk factor for falls, and
highlights the need for exercise programs that integrate the
environmental hazards encountered in every-day life (i.e.,
gait adaptability).

The fact that gait adaptability is generally not targeted in
interventions aimed at reducing falls and fall risk in older
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adults implies that there is ample room for improvement
of fall-prevention programs. The recent introduction of the
C-Mill (Figure 1; ForceLink, Culemborg, The Netherlands)
holds significant promise in that regard. The C-Mill is an
innovative, instrumented rehabilitation treadmill with task-
relevant visual context (e.g., obstacles, stepping targets)
projected on the belt’s surface. The C-Mill was explicitly
developed as a therapeutic tool to practice gait adaptability,
elicited by aligning foot placement relative to the projected
visual context [25]. In other words, the presented obstacles
and stepping targets on the belt’s surface mandate gait ad-
justments to accurately position the feet relative to that vis-
ual context, akin to the gait adjustments required to walk
safely in continually changing everyday environments. Be-
cause the C-Mill is instrumented with a force platform, it
is known when and where the feet are placed on the belt’s
surface [26], allowing for direct performance feedback with
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Figure 1 C-Mill. The C-Mill is a 3-m long instrumented treadmill
with visual objects such as stepping targets and obstacles projected
on the belt to facilitate practice of foot placement relative to
environmental context. A force platform is embedded in the
treadmill for real-time determination of gait and foot-placement
positions, allowing for various gait adaptability interventions
accustomed to an individual's gait. The visual context is projected
on the belt’s surface, approaching the patient with the speed of the
treadmill belt. The handrails permit weight-bearing and allow early
training in a safe environment.
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regard to gait parameters (e.g., step width, step length) as
well as gait-context interactions (e.g., foot placement rela-
tive to the presented visual context; see Methods for more
details). Whereas C-Mill training is focused explicitly on
practicing gait adaptability relative to environmental haz-
ards, it may as well implicitly target various intrinsic
and extrinsic factors associated with falling, such as ex-
ecutive function [14,17,27], gait-related attentional de-
mands [17,27-29], postural control during walking and
step adjustments [30,31], and muscle strength [31-33].

This study protocol is designed to examine the efficacy
of C-Mill gait adaptability training for improving walking
ability and reducing fall incidence and fear of falling in
older adults residing in inpatient rehabilitation care to
recover from a fall-related hip fracture, a group particu-
larly prone to falling [6-9]. The efficacy of C-Mill gait
adaptability training will not only be contrasted against
usual care, comprising of exercises in strength, balance,
overground walking, transfers and activities of daily
living, but also against intensity matched conventional
treadmill training (i.e., without visual context presented
on the belt), promoting repetitive stepping. Literature on
conventional treadmill training in older adults recover-
ing from hip injury is quite scarce, but generally positive
with regard to its efficacy [32,33]. Conventional treadmill
training outperforms overground gait training in that re-
gard, most likely because of the enhanced intensity of
training (i.e., defined in number of steps taken per train-
ing session). Older adults with a total hip arthroplasty,
for example, performed 1000-1500 steps during a con-
ventional treadmill training session compared to 100-
150 steps during an overground gait training session of
similar duration [32]. We therefore hypothesize that
both conventional treadmill training and C-Mill gait
adaptability treadmill training result in better outcomes
related to walking ability than usual care due to the
enhanced training intensity, with superior effects for
C-Mill gait adaptability treadmill training on gait
adaptability aspects of walking given the concurrent
focus on practicing gait adaptability. The present study
will thus shed light on the relative importance of high
versus low practice intensity and adaptive versus re-
petitive stepping as key ingredients for effective inter-
vention programs aimed at improving walking ability
and reducing fall risk and fear of falling in older adults
recovering from a fall-related hip fracture.

Methods/design

Recruitment

All patients with a hip fracture admitted to residential
and rehabilitation centre Zorggroep Solis, Deventer, The
Netherlands will be assessed for eligibility within 3 days
from admission by a physical therapist during regular in-
take. We aim to recruit 126 geriatric patients. Inclusion
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criteria are admission with a hip fracture related to fall-
ing, age=65 years, Functional Ambulation Category
score 2 or higher (FAC, [34,35]), expected duration of
admission > 6 weeks and an ability to understand and
execute simple instructions. Exclusion criteria are not
being allowed to bear weight on the affected leg, moder-
ate or severe cognitive impairments as indicated with a
score below 18 at the Mini-Mental State Examination
(MMSE, [36]), severe non-corrected visual impairments,
contraindication to physical activity and an activity toler-
ance below 40 minutes with rest intervals. Patients eli-
gible for participation will be informed of the current
study by the physical therapist, both verbally and in writ-
ing. Patients who are willing to participate will be asked
to give informed consent.

Ethical approval

This study has been approved by the Medical Ethical
Reviewing Committee of VU University Medical Centre,
Amsterdam, The Netherlands (cf., protocol number 2011/
327 and Central Committee on Research Involving Hu-
man Subjects, CCMO, protocol number NL37842.029.11).

Study design

This protocol presents a parallel group, single-blind, su-
periority randomized controlled trial with pre-tests, post-
tests, retention-tests and follow-up (Figure 2) to evaluate
the relative efficacy of three intervention programs. Prior
to randomization, pre-intervention assessments (T0) will
be performed by one of two assessors within one week
from informed consent. Subsequently, the assessor will
randomly allocate (ratio 1:1:1) participants to one of three
groups: 1) usual care (UC) control group, 2) conventional
treadmill (CT) intervention group, 3) adaptability treadmill
(AT) intervention group. We will use computer-generated
block randomization with a block size of 21 participants to
ensure equal group size after each block, with allocation
concealment by opaque sequentially numbered envelopes
that will be allocated serially to participants. An indepen-
dent assessor blinded to group allocation will conduct
post-intervention assessments (T1) within one week after
completion of the intervention program. The same asses-
sor will repeat these assessments 1 month later (retention
assessments, T2). Follow-up assessments (T3) will be
performed 12 months after completion of the intervention
program. Furthermore, the incidence of trips, slips and
falls will be monitored monthly between T1 and T3.

Intervention program

The intervention programs will be dose-matched in terms
of duration (i.e., 40 minutes per session) and frequency
(ie., five sessions per week) of therapy over a 6-week in-
patient intervention period. All intervention programs will
be provided by physical therapists of Solis Zorggroep,
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Figure 2 Flow chart of the study procedures. Abbreviations: AT = adaptability treadmill, CT = conventional treadmill, UC = usual care.

Deventer, The Netherlands. Therapy sessions will typically
be conducted by a single physical therapist with two par-
ticipants per session; the two participants alternately exer-
cise and rest, resulting in 20 minutes of practice per
session. Physical therapists and participants cannot be
blinded to group allocation.

In the usual care (UC) control group, participants will
receive conventional physical therapy in all 30 sessions,
consisting of exercises of upper-leg strength, balance,
transfers, overground walking, and activities of daily liv-
ing, following locally implemented guidelines of Solis
Zorggroep, Deventer, The Netherlands and Deventer
Hospital, Deventer, The Netherlands regarding the treat-
ment of hip fractures.

In the conventional treadmill (CT) intervention group,
participants will receive 15 conventional physical therapy
sessions (as in UC) and 15 conventional treadmill training
sessions (week 1-3: 2 per week, week 4-6: 3 per week) with
an emphasis on repetitive stepping. Participants will walk
at comfortable treadmill walking speed, without body-
weight support other than handrail support. Comfortable
treadmill walking speed will be determined at the begin-
ning of each session in order to promote the quality and
safety of walking as appraised by the physical therapist.
The initial focus of conventional treadmill training will be

on the quality and safety aspects of walking: therefore,
therapists may give instructions regarding the walking pat-
tern. After a safe walking pattern has been established, the
focus will gradually shift towards walking faster and
longer. Participants in the CT group will walk on the
C-Mill treadmill (C-Mill, ForceLink, Culemborg, The
Netherlands), but without projection of visual context
on the belt’s surface.

In the adaptability treadmill (AT) intervention group,
participants will receive 15 conventional physical therapy
sessions (as in UC) and 15 C-Mill gait adaptability tread-
mill training sessions (week 1-3: 2 per week, week 4-6:
3 per week) with an emphasis on practicing gait adapt-
ability. As in CT, participants will walk at comfortable
treadmill walking speed, without body-weight support
other than handrail support. The two AT training ses-
sions in the first week will consist of conventional
treadmill training with an emphasis on the safety and
quality aspects of walking (i.e., without visual context,
similar to CT), so that participants will become
acquainted to treadmill walking.

From week 2 onwards, AT training sessions progres-
sively utilize the C-Mill’s visual context to elicit step ad-
justments (Figure 3 and Additional file 1). The gait
adaptability exercises will be increased in difficulty from
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above in a functional and interactive gait adaptability game (D).

Figure 3 Examples of C-Mill gait adaptability exercises. Participants practice visually guided stepping to a sequence of regular or irregular
stepping targets (A), obstacle avoidance (B), speeding up and slowing down by maintaining position in a moving walking zone (C), and all of the
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week to week to ensure that they remain sufficiently
challenging. For reasons of safety and feasibility this will
be done in a controlled fashion, tailored to the partici-
pant’s progress and ability. Specifically, in the second
week of AT training, visually guided stepping to a
sequence of stepping targets (Figure 3A) will be
introduced to practice foot positioning relative to the
environmental context projected on the belt. The spatial
configuration of the sequence of stepping targets can be
manipulated, requiring gait adjustments in terms of step
length, step width and step-length symmetry. Furthermore,
step adjustments can also be elicited on a step-to-step basis
by introducing a degree of irregularity in the sequence of
stepping targets. Consequently, each step needs to be
planned and executed from scratch to ensure accurate foot
placement relative to the stepping target. Visually guided
stepping can be made more challenging by changing the
degree of irregularity in the sequence of stepping targets
and by scaling their size to the participants’ feet. In the
third week, obstacle avoidance exercises will be included
(Figure 3B) while continuing with the visually guided step-
ping exercises. Visual obstacles are projected onto the
treadmill belt, and the difficulty level for obstacle avoidance
will be controlled by the physical therapist by changing the
size of the obstacle as well as the available response
time (i.e., obstacles can appear a few steps ahead [easy]
or during the swing phase of an ongoing step [difficult]).
Obstacle avoidance is also evoked in the visually guided

stepping exercises by introducing sudden target to
obstacle shifts in the sequence of stepping targets,
requiring an adjustment of an already planned step.
From the fourth week onwards, participants will also
practice speeding up and slowing down. To this end, a
projected walking area of approximately 1 m?* will oscil-
late in anterior-posterior direction over the treadmill
surface (Figure 3C). Participants will need to accelerate
or decelerate relative to the fixed belt speed in order to
follow the walking area; therapists can progressively or
randomly vary the acceleration of the walking area to
increase the difficulty of this speeding-up/slowing-down
exercise. From the fourth week onwards, also so-called
gait adaptability games will be introduced in the AT
training sessions (Figure 3D). These gait adaptability
games consist of interactive forest or beach trails
scattered with stepping targets (e.g., beach balls) and
obstacles (e.g., seals, shells, crabs). Participants can
score or lose points depending on the successfulness of
foot positioning relative to this environmental con-
text. The interaction with the environment will be
intensified further by means of direct feedback of
stepping performance (e.g., the beach ball will pop
forward if participants successfully step on it while a
seal will scream loudly if participants accidentally
step on it).

Note that we predict that the intensity of training, in
terms of number of performed steps, will be markedly
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higher for both treadmill training intervention groups
(i.e., AT and CT) than for the UC control group. We
will test this prediction by comparing the number of
steps taken per session among groups. To this end, the
number of steps taken during AT and CT training ses-
sions will be registered using the treadmill’s step coun-
ter while an observer will count the number of steps
taken during UC sessions in a random sample of partici-
pants. We expect a main effect of Group in a one-way
ANOVA, with post-hoc independent t-tests revealing
significantly fewer steps for the UC control group than
for both AT and CT training groups, in the absence of a
significant difference between the latter groups.

To assist the therapist in progressively scaling the AT
and CT training sessions, the participant’s perceived rate
of fear and difficulty during AT and CT sessions will be
assessed at a scale from 0 (no fear/not difficult) to 10
(much fear/very difficult), as well as their perceived rate of
exertion using the 15 grade Borg scale (range 6-20, [37]).

Finally, adherence will be reported and the content of
all individual training sessions will be registered by the
supervising physical therapist. Adverse events during
training sessions will be reported as well, and after
completing the last UC, CT or AT therapy session of
the intervention period, participants will fill out a
purpose-designed questionnaire to register perceived
discomforts during and after training sessions. The
participant’s experience with the therapy program will
be evaluated with this questionnaire as well to be able
to compare the feasibility of the interventions from a
participant’s perspective.

Table 1 Study assessment schedule
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Outcome measures

Measures related to walking ability are the primary out-
come in this study, whereas measures related to fear of
falling, fall incidence and general health are secondary
outcomes. Table 1 provides an overview of the assess-
ments performed at TO, T1, T2 and T3.

TO (pre-intervention assessments)

Outcome measures related to walking ability obtained
during TO will comprise scores of mobility (POMA
[38-40], Elderly Mobility Scale EMS; [41,42]), executive
function (Trail Making Test TMT; [43-45], requiring
visual scanning, task shifting, planning and mental flexi-
bility), general functional walking ability (Functional
Ambulation Category FAC; [34,35]), and pre-admission
activity of daily living status (Nottingham Extended
Activities of Daily Living scale NEADL; [46-48]). Out-
come measures related to fear of falling and general
health will include perceived fear of falling (Falls Efficacy
Scale International FES-I; [49,50]) and perceived general
health status (visual analogue scale VAS; [51]). Demo-
graphics, medical information regarding hip fracture, co-
morbidities, medication use and pre-admission daily
functioning, including the use of assistive devices, will
be obtained from medical files.

T1 (post-intervention assessments)

Similar to TO, POMA, EMS, TMT, FAC, FES-I and VAS
scores of perceived general health will be obtained at T1
as well. Current living situation and the use of assistive de-
vices will also be scored. To evaluate walking ability, we

Intake TO T1 T2 T3
Primary outcome measures related to walking ability
Performance Oriented Mobility Assessment (POMA) X X X X
10 Meter Walking Test with obstacles (10MWTqpstacle) X X
10 Meter Walking Test with cognitive task (10MWTcognitive) X X
Trail Making Test (TMT) X X X X
Functional Ambulation Category (FAC) X X X X
Elderly Mobility Scale (EMS) X X X X
10 Meter Walking Test (10MWT) X X
Timed Up-and-Go test (TUG) X X
Nottingham Extended Activities of Daily Living (NEADL) X X X
Secondary outcome measure, related to fear of falling
Falls Efficacy Scale International (FES-I) X X X X
Secondary outcome measure, related to fall incidence
Monthly fall diary X
Secondary outcome measures, related to general health
Visual Analogue Scale of perceived general health (VAS) X X X X
Mini-Mental State Examination (MMSE)
Hip Disability and Osteoarthritis Score (HOOS) X X
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will further perform the Timed Up-and-Go test (TUG,
[52]) and the 10 Meter Walk Test (1I0MW'T, [48]). In
addition to the standard 10MWTT, we will also perform the
10MWT with 3 obstacles in the walkway to evaluate
obstacle avoidance during walking (10MWT jpseacles ONE
10x 20 x 5 cm and two 5 x 20 x 10 cm obstacles [height x
width x length]) and while subtracting 3’s from a random
number between 191 and 199 to evaluate the dual-task
costs of walking (I0MW Tcognitives the serial-3 subtraction
task will first be practiced for 60 seconds). Accordingly,
the serial-3 subtraction task will also be performed as a
single task. The modified 1I0MWTs are deemed inform-
ative given the older adults’ impaired ability to avoid
obstacles and their elevated attentional demands of walk-
ing — both factors related to fall risk [17,24,53-55]. The
TUG and 10MWTs will be performed twice, taking the
average time in seconds that is necessary to complete each
test as the outcome measure. The number of serial-3 sub-
tractions as well as the number of mistakes made will be
used as additional outcome measures for evaluating the
dual-task costs of walking.

T2 (retention assessments)

All tests performed at T1 will be repeated 4 weeks later
at T2. In addition, the NEADL will be conducted to as-
sess the activities of daily living performed between T1
and T2. The Hip Disability and Osteoarthritis Score
(HOOS, [56,57]) will be administered to monitor symp-
toms and functional limitations related to the hip. In
addition, participants will be asked about the use of as-
sistive devices, tolerated walking distance, complications
and physical therapy in the past four weeks. If applic-
able, the content of physical therapy will be recorded.

T3 (follow-up assessments)

All tests performed at TO will be repeated after 12
months follow-up at T3 and participants will again be
questioned about the use of assistive devices, tolerated
walking distance, complications and physical therapy in
the past 12 months. The HOOS will also be adminis-
tered at T3. Furthermore, the occurrence of trips, slips
and falls will be monitored monthly between T1 and T3
using a daily calendar diary for postal use [58]. When a
fall occurs, the participant has to answer additional
questions on the daily calendar diary regarding the cir-
cumstances of the fall and the injuries caused by the fall.
If a calendar is not returned or information is incom-
plete, the participant will be reminded to return the cal-
endar or the missing information will be obtained
during a telephone conversation.

Sample size
We used the POMA [38] to perform a sample size cal-
culation, because the POMA is a generic and widely
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used test to evaluate walking ability and has been associ-
ated with risk of falling [39,40]. Earlier clinical trials in
which the POMA was used as an outcome measure
reported mean differences of 4.0 and 3.5 POMA points
between the intervention and control group [59,60]. The
average standard deviations at follow-up measurements
in these studies were respectively 3.8 and 4.8 POMA
points. Assuming the lowest difference in mean value
between groups (i.e., 3.5 POMA points), the highest
standard deviation (i.e., 4.8 POMA points) and a correl-
ation coefficient of 0.7, a sample size of 32 participants
in each group is required to achieve 80% power with a
two-tailed conservative alpha of 0.017 that is corrected
for multiple comparisons. This sample size is based on
the formula given by Twisk [61] to compare longitudinal
outcome measures between groups.

We will include 126 participants who complete at least
four weeks of intervention and pre- and post-intervention
assessments (i.e., TO and T1). Hence, participants who do
not adhere to the protocol will be replaced to maintain a
valid per-protocol assessment of sufficient power. In
addition, this sample size allows for a maximum drop-out
rate of 24% from T1 to T3.

Data analyses

Descriptive statistics will be used to present group
characteristics (e.g., sex, age, MMSE, medication use,
comorbidities, side of fracture and the use of an assistive
device), therapy adherence and adverse events. Baseline
characteristics will be compared between groups with
one-way ANOVAs. Given the explanatory objective
of this study regarding the efficacy of C-Mill gait
adaptability training, data will be analyzed per proto-
col, which implies that we will only include data of
participants who completed at least 4 weeks of training
and pre-intervention and post-intervention assessments
(ie., both TO and T1). For longitudinal outcome measures
(FAC, POMA, EMS, VAS, FES-I, TMT, NEADL, 10MWT,
1IOMW T ognitives IOMW T gtactes TUG, HOOS), multilevel
regression analyses will be applied, which is appropriate for
analyzing longitudinal data in which observations
within one participant over time are correlated [61].
In addition, multilevel regression analyses account for
missing values and allow baseline covariates to con-
trol for potential differences in baseline characteristics
between groups [61].

Discussion

Falls are a common mishap among older adults and im-
pose a major burden on older adults and the community
at large; it is therefore important to gather evidence on
the effectiveness of intervention programs and their de-
sign features (e.g., adaptive versus repetitive stepping,
high versus low practice intensity). The current study
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was conceived to examine the efficacy of gait adaptability
exercises in intervention programs aimed at improving
walking ability and reducing fall incidence. Recently, en-
couraging first steps in this direction have been taken (e.g.,
[24,27,62,63]). Weerdesteyn et al. [24], for example, inte-
grated overground gait adaptability exercises in a 5-week
Nijmegen Falls Prevention Program for older adults, and
found improved obstacle avoidance success rates, im-
proved balance confidence and reduced fall incidence dur-
ing one year follow-up. Given that the Nijmegen Falls
Prevention Program consisted of overground walking, and
hence practice intensity was presumably fairly low (ie.,
number of steps taken per session), the observed beneficial
effects are encouraging as they may be enhanced even fur-
ther by increasing the practice intensity of gait adaptability
exercises, such as with our C-Mill based gait adaptability
training protocol.

In another encouraging study, Mirelman et al. [27]
exploited the potential of virtual reality (VR) to practice
step adjustments while walking on a treadmill. Partici-
pants’ feet positions were fed back in a virtual environ-
ment (i.e., a path with obstacles and targets) presented
on a monitor in front of them. After 6 weeks of VR
treadmill training, improved obstacle avoidance behavior,
higher walking speed while performing a dual task and
improved executive function (as assessed with the TMT)
were observed for people with Parkinson’s disease. Also
for people in the chronic phase after stroke, beneficial
effects of VR treadmill training, using a head-mounted
display [62] or a large screen in front of the treadmill
[63], have been reported. All of these studies indicated
that gait adaptability training with VR may help improve
walking ability and reduce fall incidence in populations
prone to falling. Note that C-Mill gait adaptability train-
ing is distinct from VR gait adaptability training in that
C-Mill training elicits gait adjustments relative to visual
context presented in the real environment, whereas with
virtual reality training gait adjustments in the real world
are detached from the context presented in the virtual
environment. Given that gait adjustment is tied to task-
relevant visual context in the VR environment only, VR
gait adaptability training fails to utilize the direct visuo-
motor coupling of walking (e.g., [64-66]), where point of
gaze is coupled to future foot placement locations, par-
ticularly in the presence of surface irregularities. Moreover,
visuomotor control of targeted stepping deteriorates with
aging, resulting in less accurate foot placement relative to
stepping targets, especially in elderly with a high fall risk
[67,68], but proved to ameliorate with training [69]. These
examples illustrate the intimate relation between point of
gaze and stepping accuracy relative to environmental con-
text. The direct coupling between gaze and gait is fully
exploited in C-Mill gait adaptability treadmill training in
which step adjustments are elicited relative to visual
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context in the real environment (viz. augmented reality)
rather than visual context in the virtual environment (viz.
virtual reality). C-Mill gait adaptability training may
thereby tentatively be even more effective than the
abovementioned VR applications to practice step adjust-
ments [27,62,63], which lack such a direct coupling.

The expected superior outcome of C-Mill gait adapt-
ability treadmill training relative to conventional tread-
mill training is further supported by current insights
into motor learning in the context of neurorehabilitation
[70], which suggest that a considerable variability during
practice enhances long-term training effects and transfer
to new tasks and contexts compared to constant and re-
petitive practice (e.g., conventional treadmill training;
[71-73]). Several theories of motor learning stress the
importance of variability in training, including Schmidt’s
schema theory [74], and theories of contextual interfer-
ence [75] and differential learning [76]. These theoretical
approaches have in common that one should exploit ra-
ther than eliminate variation in task performance to
yield optimal learning effects in terms of retention and
transfer. This insight is highly relevant for rehabilitation,
which aims at long-lasting and general improvements.
Exercises during C-Mill gait adaptability treadmill train-
ing, such as obstacle avoidance, visually guided stepping,
speeding-up and slowing-down, and the interactive gait
adaptability games, promote variable practice, which is
further reinforced by varying obstacle size, moment of
obstacle presentation, and the amount of variability in
visually guided stepping (see Methods, Intervention pro-
gram; see Additional file 1). This variable practice envir-
onment affords deep motor learning in that each step
needs to be planned and executed from scratch in order
to position it successfully relative to the visual context
projected on the belt’s surface (e.g., [75]).

Gait adjustments to environmental context strongly
rely on executive function [16,17], which comprises
multiple cognitive processes including visual scanning,
problem solving, planning, and task shifting (cf. the
deeper form of motor learning referred to above). Inter-
estingly, previous studies found indications for im-
proved executive function after VR treadmill training
with an emphasis on step adjustments [27], as measured
with the Trail Making Test [43-45]. Such training in-
duced changes in executive function are important be-
cause reduced executive function has been associated
with gait impairments, reduced obstacle avoidance abil-
ity and falling [14,15,17]. Moreover, executive function
is known to decline with age [17]. Considering that vis-
ual scanning, problem solving, planning, and task-
shifting are integral elements in C-Mill gait adaptability
treadmill training (i.e., to secure adequate foot place-
ment relative to the projected environmental context),
similar training induced improvements in executive
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function —which will be quantified by the Trail Making
Test— may be observed in the present study for AT
compared to CT and UC groups.

Limitations

The inclusion and exclusion criteria for this study are
deliberately quite broadly defined, such that the included
patients are likely to be representative of the older popula-
tion seen in daily clinical practice. This implies that the
included patients likely exhibit various co-morbidities,
resulting in heterogeneous study groups akin to the gen-
eral population of older adults. On the one hand this may
hamper between-group comparisons, but on the other
hand findings may generalize well to mixed populations of
older adults, which likely facilitates future implementation
of the study’s results.

The use of vitamin D will not be intervened in the
current study, implying that participants will not be
supplemented with vitamin D as a standard. This resem-
bles daily clinical practice, and may therefore also facilitate
future implementation of the study’s results. However,
since vitamin D supplementation has been associated with
reduced fall rate and risk [5,7], supplementation will be
reported in order to be able to control for vitamin D sup-
plementation afterwards. Likewise, smoking history will be
registered, since smoking is likely to adversely affect bone
healing, bone mineral density, wound healing and the inci-
dence of hip fractures [77-80].

Some outcome measures of walking ability (i.e., TUG,
1IOMWT, 10MW T ognitive and 10MW T gpgac1e) Will not be
assessed at TO, mainly because pain and exertion will limit
the number and content of conductible tests at TO. Com-
paring outcome measures not assessed at TO between
groups entails the risky assumption that groups do not dif-
fer at TO. To test this assumption, POMA, FAC and EMS,
which are good indicators of walking ability, will be exam-
ined at TO. Results based on outcome measures not
assessed at TO should be interpreted with care. Other
points of consideration include the different assessors at
TO, T1, T2 and T3, and the different setting of T3, which
is administered during a home visit. Although the
performed tests are well standardized and have good valid-
ity and reliability [35,39,42-44,47,50,51,57], differences in
test setting should be kept in mind when interpreting the
results. The limitations in the current study mostly con-
cern logistic choices based on clinical constraints, which
are handled as well as possible to minimize bias.

Conclusions

The study will provide insight into the effect of C-Mill gait
adaptability treadmill training and conventional treadmill
training for improving walking ability and reducing fall
risk and fear of falling in older adults recovering from a
fall-related hip fracture. In this regard, the results of this
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study are likely to contribute to the effectiveness of inter-
vention programs. Moreover, the study will shed light on
the relative importance of adaptive versus repetitive step-
ping and high versus low intensity of practice as ingredi-
ents for fall prevention programs, and may help reduce
future fall-related health-care costs. The results of this
study are expected in 2015.

Additional file

Additional file 1: Video of C-Mill gait adaptability exercises. C-Mill
gait adaptability exercises include visually guided stepping to a regular or
irregular sequence of stepping targets, obstacle avoidance, speeding up
and slowing down, and all of the above in a functional and interactive
gait adaptability game.
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